|
import math |
|
import torch |
|
from torch.nn import functional as F |
|
from torch import nn |
|
|
|
|
|
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): |
|
return F.leaky_relu(input + bias, negative_slope) * scale |
|
|
|
|
|
class FusedLeakyReLU(nn.Module): |
|
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): |
|
super().__init__() |
|
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) |
|
self.negative_slope = negative_slope |
|
self.scale = scale |
|
|
|
def forward(self, input): |
|
|
|
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) |
|
|
|
return out |
|
|
|
|
|
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): |
|
_, minor, in_h, in_w = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = input.view(-1, minor, in_h, 1, in_w, 1) |
|
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) |
|
out = out.view(-1, minor, in_h * up_y, in_w * up_x) |
|
|
|
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) |
|
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] |
|
|
|
|
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) |
|
|
|
|
|
return out[:, :, ::down_y, ::down_x] |
|
|
|
|
|
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): |
|
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) |
|
|
|
|
|
def make_kernel(k): |
|
k = torch.tensor(k, dtype=torch.float32) |
|
|
|
if k.ndim == 1: |
|
k = k[None, :] * k[:, None] |
|
|
|
k /= k.sum() |
|
|
|
return k |
|
|
|
|
|
class Blur(nn.Module): |
|
def __init__(self, kernel, pad, upsample_factor=1): |
|
super().__init__() |
|
|
|
kernel = make_kernel(kernel) |
|
|
|
if upsample_factor > 1: |
|
kernel = kernel * (upsample_factor ** 2) |
|
|
|
self.register_buffer('kernel', kernel) |
|
|
|
self.pad = pad |
|
|
|
def forward(self, input): |
|
return upfirdn2d(input, self.kernel, pad=self.pad) |
|
|
|
|
|
class ScaledLeakyReLU(nn.Module): |
|
def __init__(self, negative_slope=0.2): |
|
super().__init__() |
|
|
|
self.negative_slope = negative_slope |
|
|
|
def forward(self, input): |
|
return F.leaky_relu(input, negative_slope=self.negative_slope) |
|
|
|
|
|
class EqualConv2d(nn.Module): |
|
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): |
|
super().__init__() |
|
|
|
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) |
|
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) |
|
|
|
self.stride = stride |
|
self.padding = padding |
|
|
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_channel)) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, input): |
|
|
|
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, |
|
padding=self.padding, ) |
|
|
|
def __repr__(self): |
|
return ( |
|
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' |
|
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' |
|
) |
|
|
|
|
|
class EqualLinear(nn.Module): |
|
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): |
|
super().__init__() |
|
|
|
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) |
|
|
|
if bias: |
|
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) |
|
else: |
|
self.bias = None |
|
|
|
self.activation = activation |
|
|
|
self.scale = (1 / math.sqrt(in_dim)) * lr_mul |
|
self.lr_mul = lr_mul |
|
|
|
def forward(self, input): |
|
|
|
if self.activation: |
|
out = F.linear(input, self.weight * self.scale) |
|
out = fused_leaky_relu(out, self.bias * self.lr_mul) |
|
else: |
|
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) |
|
|
|
return out |
|
|
|
def __repr__(self): |
|
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') |
|
|
|
|
|
class ConvLayer(nn.Sequential): |
|
def __init__( |
|
self, |
|
in_channel, |
|
out_channel, |
|
kernel_size, |
|
downsample=False, |
|
blur_kernel=[1, 3, 3, 1], |
|
bias=True, |
|
activate=True, |
|
): |
|
layers = [] |
|
|
|
if downsample: |
|
factor = 2 |
|
p = (len(blur_kernel) - factor) + (kernel_size - 1) |
|
pad0 = (p + 1) // 2 |
|
pad1 = p // 2 |
|
|
|
layers.append(Blur(blur_kernel, pad=(pad0, pad1))) |
|
|
|
stride = 2 |
|
self.padding = 0 |
|
|
|
else: |
|
stride = 1 |
|
self.padding = kernel_size // 2 |
|
|
|
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, |
|
bias=bias and not activate)) |
|
|
|
if activate: |
|
if bias: |
|
layers.append(FusedLeakyReLU(out_channel)) |
|
else: |
|
layers.append(ScaledLeakyReLU(0.2)) |
|
|
|
super().__init__(*layers) |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): |
|
super().__init__() |
|
|
|
self.conv1 = ConvLayer(in_channel, in_channel, 3) |
|
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) |
|
|
|
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) |
|
|
|
def forward(self, input): |
|
out = self.conv1(input) |
|
out = self.conv2(out) |
|
|
|
skip = self.skip(input) |
|
out = (out + skip) / math.sqrt(2) |
|
|
|
return out |
|
|
|
|
|
class Discriminator(nn.Module): |
|
def __init__(self, size, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]): |
|
super().__init__() |
|
|
|
self.size = size |
|
|
|
channels = { |
|
4: 512, |
|
8: 512, |
|
16: 512, |
|
32: 512, |
|
64: 256 * channel_multiplier, |
|
128: 128 * channel_multiplier, |
|
256: 64 * channel_multiplier, |
|
512: 32 * channel_multiplier, |
|
1024: 16 * channel_multiplier, |
|
} |
|
|
|
convs = [ConvLayer(3, channels[size], 1)] |
|
log_size = int(math.log(size, 2)) |
|
in_channel = channels[size] |
|
|
|
for i in range(log_size, 2, -1): |
|
out_channel = channels[2 ** (i - 1)] |
|
convs.append(ResBlock(in_channel, out_channel, blur_kernel)) |
|
in_channel = out_channel |
|
|
|
self.convs = nn.Sequential(*convs) |
|
|
|
self.stddev_group = 4 |
|
self.stddev_feat = 1 |
|
|
|
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) |
|
self.final_linear = nn.Sequential( |
|
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'), |
|
EqualLinear(channels[4], 1), |
|
) |
|
|
|
def forward(self, input): |
|
out = self.convs(input) |
|
batch, channel, height, width = out.shape |
|
|
|
group = min(batch, self.stddev_group) |
|
stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width) |
|
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) |
|
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) |
|
stddev = stddev.repeat(group, 1, height, width) |
|
out = torch.cat([out, stddev], 1) |
|
|
|
out = self.final_conv(out) |
|
|
|
out = out.view(batch, -1) |
|
out = self.final_linear(out) |
|
|
|
return out |
|
|