Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,32 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
from safetensors.torch import load_file
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
|
|
|
| 8 |
import lora
|
| 9 |
import copy
|
| 10 |
import json
|
| 11 |
import gc
|
| 12 |
import random
|
| 13 |
from urllib.parse import quote
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
with open("sdxl_loras.json", "r") as file:
|
| 15 |
data = json.load(file)
|
| 16 |
sdxl_loras_raw = [
|
|
@@ -52,16 +68,60 @@ sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True
|
|
| 52 |
|
| 53 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
vae = AutoencoderKL.from_pretrained(
|
| 58 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 59 |
)
|
| 60 |
-
pipe =
|
| 61 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 62 |
vae=vae,
|
| 63 |
torch_dtype=torch.float16,
|
| 64 |
)
|
|
|
|
| 65 |
original_pipe = copy.deepcopy(pipe)
|
| 66 |
pipe.to(device)
|
| 67 |
|
|
@@ -162,9 +222,22 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 162 |
del lora_model
|
| 163 |
gc.collect()
|
| 164 |
|
| 165 |
-
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_loras_new, progress=gr.Progress(track_tqdm=True)):
|
| 166 |
global last_lora, last_merged, last_fused, pipe
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
if(selected_state.index < 0):
|
| 169 |
if(selected_state.index == -9999):
|
| 170 |
selected_state.index = 0
|
|
@@ -194,19 +267,22 @@ def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_lora
|
|
| 194 |
if(is_pivotal):
|
| 195 |
#Add the textual inversion embeddings from pivotal tuning models
|
| 196 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
|
| 201 |
-
embhandler.load_embeddings(embedding_path)
|
| 202 |
|
| 203 |
image = pipe(
|
| 204 |
prompt=prompt,
|
| 205 |
negative_prompt=negative,
|
| 206 |
width=1024,
|
| 207 |
height=1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
num_inference_steps=20,
|
| 209 |
-
guidance_scale=7
|
|
|
|
| 210 |
).images[0]
|
| 211 |
last_lora = repo_name
|
| 212 |
gc.collect()
|
|
@@ -332,7 +408,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 332 |
show_progress=False
|
| 333 |
).success(
|
| 334 |
fn=run_lora,
|
| 335 |
-
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new],
|
| 336 |
outputs=[result, share_group],
|
| 337 |
)
|
| 338 |
button.click(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
from safetensors.torch import load_file
|
| 5 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 6 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
| 7 |
+
|
| 8 |
import lora
|
| 9 |
import copy
|
| 10 |
import json
|
| 11 |
import gc
|
| 12 |
import random
|
| 13 |
from urllib.parse import quote
|
| 14 |
+
import gdown
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
import diffusers
|
| 18 |
+
from diffusers.utils import load_image
|
| 19 |
+
from diffusers.models import ControlNetModel
|
| 20 |
+
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
|
| 21 |
+
import cv2
|
| 22 |
+
import torch
|
| 23 |
+
import numpy as np
|
| 24 |
+
from PIL import Image
|
| 25 |
+
|
| 26 |
+
from insightface.app import FaceAnalysis
|
| 27 |
+
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
| 28 |
+
from controlnet_aux import ZoeDetector
|
| 29 |
+
|
| 30 |
with open("sdxl_loras.json", "r") as file:
|
| 31 |
data = json.load(file)
|
| 32 |
sdxl_loras_raw = [
|
|
|
|
| 68 |
|
| 69 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
| 70 |
|
| 71 |
+
# download models
|
| 72 |
+
hf_hub_download(
|
| 73 |
+
repo_id="InstantX/InstantID",
|
| 74 |
+
filename="ControlNetModel/config.json",
|
| 75 |
+
local_dir="/data/checkpoints",
|
| 76 |
+
)
|
| 77 |
+
hf_hub_download(
|
| 78 |
+
repo_id="InstantX/InstantID",
|
| 79 |
+
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
| 80 |
+
local_dir="/data/checkpoints",
|
| 81 |
+
)
|
| 82 |
+
hf_hub_download(
|
| 83 |
+
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
|
| 84 |
+
)
|
| 85 |
+
hf_hub_download(
|
| 86 |
+
repo_id="latent-consistency/lcm-lora-sdxl",
|
| 87 |
+
filename="pytorch_lora_weights.safetensors",
|
| 88 |
+
local_dir="/data/checkpoints",
|
| 89 |
+
)
|
| 90 |
+
# download antelopev2
|
| 91 |
+
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output=".", quiet=False, fuzzy=True)
|
| 92 |
+
# unzip antelopev2.zip
|
| 93 |
+
os.system("unzip .antelopev2.zip -d /data/models/")
|
| 94 |
+
|
| 95 |
+
app = FaceAnalysis(name='antelopev2', root='./data', providers=['CPUExecutionProvider'])
|
| 96 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 97 |
+
|
| 98 |
+
# prepare models under ./checkpoints
|
| 99 |
+
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
| 100 |
+
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
| 101 |
+
|
| 102 |
+
# load IdentityNet
|
| 103 |
+
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
| 104 |
+
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
| 105 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 106 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
| 107 |
+
vae=vae,
|
| 108 |
+
controlnet=[identitynet, zoedepthnet],
|
| 109 |
+
torch_dtype=torch.float16)
|
| 110 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
| 111 |
+
pipe.load_ip_adapter_instantid(face_adapter)
|
| 112 |
+
pipe.set_ip_adapter_scale(0.8)
|
| 113 |
+
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 114 |
+
zoe.to("cuda")
|
| 115 |
|
| 116 |
vae = AutoencoderKL.from_pretrained(
|
| 117 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 118 |
)
|
| 119 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
| 120 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 121 |
vae=vae,
|
| 122 |
torch_dtype=torch.float16,
|
| 123 |
)
|
| 124 |
+
|
| 125 |
original_pipe = copy.deepcopy(pipe)
|
| 126 |
pipe.to(device)
|
| 127 |
|
|
|
|
| 222 |
del lora_model
|
| 223 |
gc.collect()
|
| 224 |
|
| 225 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_loras_new, progress=gr.Progress(track_tqdm=True)):
|
| 226 |
global last_lora, last_merged, last_fused, pipe
|
| 227 |
+
|
| 228 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
| 229 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
| 230 |
+
face_emb = face_info['embedding']
|
| 231 |
+
face_kps = draw_kps(face_image, face_info['kps'])
|
| 232 |
+
|
| 233 |
+
#prepare face zoe
|
| 234 |
+
with torch.no_grad():
|
| 235 |
+
image_zoe = zoe(face_image)
|
| 236 |
+
|
| 237 |
+
width, height = face_kps.size
|
| 238 |
+
images = [face_kps, image_zoe.resize((height, width))]
|
| 239 |
+
|
| 240 |
+
|
| 241 |
if(selected_state.index < 0):
|
| 242 |
if(selected_state.index == -9999):
|
| 243 |
selected_state.index = 0
|
|
|
|
| 267 |
if(is_pivotal):
|
| 268 |
#Add the textual inversion embeddings from pivotal tuning models
|
| 269 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
| 270 |
+
state_dict_embedding = load_file(text_embedding_name)
|
| 271 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 272 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
|
|
|
|
|
|
| 273 |
|
| 274 |
image = pipe(
|
| 275 |
prompt=prompt,
|
| 276 |
negative_prompt=negative,
|
| 277 |
width=1024,
|
| 278 |
height=1024,
|
| 279 |
+
image_embeds=face_emb,
|
| 280 |
+
image=face_image,
|
| 281 |
+
strength=0.85,
|
| 282 |
+
control_image=images,
|
| 283 |
num_inference_steps=20,
|
| 284 |
+
guidance_scale = 7,
|
| 285 |
+
controlnet_conditioning_scale=[0.8, 0.8],
|
| 286 |
).images[0]
|
| 287 |
last_lora = repo_name
|
| 288 |
gc.collect()
|
|
|
|
| 408 |
show_progress=False
|
| 409 |
).success(
|
| 410 |
fn=run_lora,
|
| 411 |
+
inputs=[photo, prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new],
|
| 412 |
outputs=[result, share_group],
|
| 413 |
)
|
| 414 |
button.click(
|