Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -30,7 +30,7 @@ from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInst
|
|
| 30 |
from controlnet_aux import ZoeDetector
|
| 31 |
|
| 32 |
from compel import Compel, ReturnedEmbeddingsType
|
| 33 |
-
|
| 34 |
|
| 35 |
#from gradio_imageslider import ImageSlider
|
| 36 |
|
|
@@ -123,8 +123,6 @@ pipe.load_ip_adapter_instantid(face_adapter)
|
|
| 123 |
pipe.set_ip_adapter_scale(0.8)
|
| 124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 125 |
zoe.to(device)
|
| 126 |
-
|
| 127 |
-
original_pipe = copy.deepcopy(pipe)
|
| 128 |
pipe.to(device)
|
| 129 |
|
| 130 |
last_lora = ""
|
|
@@ -204,32 +202,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 204 |
)
|
| 205 |
del weights_sd
|
| 206 |
del lora_model
|
| 207 |
-
|
| 208 |
-
def generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale):
|
| 209 |
-
print("Processing prompt...")
|
| 210 |
-
conditioning, pooled = compel(prompt)
|
| 211 |
-
if(negative):
|
| 212 |
-
negative_conditioning, negative_pooled = compel(negative)
|
| 213 |
-
else:
|
| 214 |
-
negative_conditioning, negative_pooled = None, None
|
| 215 |
-
print("Processing image...")
|
| 216 |
-
image = pipe(
|
| 217 |
-
prompt_embeds=conditioning,
|
| 218 |
-
pooled_prompt_embeds=pooled,
|
| 219 |
-
negative_prompt_embeds=negative_conditioning,
|
| 220 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
| 221 |
-
width=1024,
|
| 222 |
-
height=1024,
|
| 223 |
-
image_embeds=face_emb,
|
| 224 |
-
image=face_image,
|
| 225 |
-
strength=1-image_strength,
|
| 226 |
-
control_image=images,
|
| 227 |
-
num_inference_steps=20,
|
| 228 |
-
guidance_scale = guidance_scale,
|
| 229 |
-
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 230 |
-
).images[0]
|
| 231 |
-
return image
|
| 232 |
-
|
| 233 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 234 |
global last_lora, last_merged, last_fused, pipe
|
| 235 |
|
|
@@ -304,8 +277,31 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 304 |
pipe.unload_textual_inversion()
|
| 305 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 306 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
last_lora = repo_name
|
| 310 |
return image, gr.update(visible=True)
|
| 311 |
|
|
|
|
| 30 |
from controlnet_aux import ZoeDetector
|
| 31 |
|
| 32 |
from compel import Compel, ReturnedEmbeddingsType
|
| 33 |
+
import spaces
|
| 34 |
|
| 35 |
#from gradio_imageslider import ImageSlider
|
| 36 |
|
|
|
|
| 123 |
pipe.set_ip_adapter_scale(0.8)
|
| 124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
| 125 |
zoe.to(device)
|
|
|
|
|
|
|
| 126 |
pipe.to(device)
|
| 127 |
|
| 128 |
last_lora = ""
|
|
|
|
| 202 |
)
|
| 203 |
del weights_sd
|
| 204 |
del lora_model
|
| 205 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 207 |
global last_lora, last_merged, last_fused, pipe
|
| 208 |
|
|
|
|
| 277 |
pipe.unload_textual_inversion()
|
| 278 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
| 279 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
| 280 |
+
|
| 281 |
+
print("Processing prompt...")
|
| 282 |
+
conditioning, pooled = compel(prompt)
|
| 283 |
+
if(negative):
|
| 284 |
+
negative_conditioning, negative_pooled = compel(negative)
|
| 285 |
+
else:
|
| 286 |
+
negative_conditioning, negative_pooled = None, None
|
| 287 |
+
print("Processing image...")
|
| 288 |
+
|
| 289 |
+
image = pipe(
|
| 290 |
+
prompt_embeds=conditioning,
|
| 291 |
+
pooled_prompt_embeds=pooled,
|
| 292 |
+
negative_prompt_embeds=negative_conditioning,
|
| 293 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
| 294 |
+
width=1024,
|
| 295 |
+
height=1024,
|
| 296 |
+
image_embeds=face_emb,
|
| 297 |
+
image=face_image,
|
| 298 |
+
strength=1-image_strength,
|
| 299 |
+
control_image=images,
|
| 300 |
+
num_inference_steps=20,
|
| 301 |
+
guidance_scale = guidance_scale,
|
| 302 |
+
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 303 |
+
).images[0]
|
| 304 |
+
|
| 305 |
last_lora = repo_name
|
| 306 |
return image, gr.update(visible=True)
|
| 307 |
|