Chunhua Liao commited on
Commit
7dabc86
Β·
1 Parent(s): 411e407

renamed to be: Open AI Co-Scientist

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Ai Co Scientist
3
  emoji: πŸ“Š
4
  colorFrom: gray
5
  colorTo: gray
@@ -8,10 +8,10 @@ sdk_version: 5.38.2
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
- short_description: open-source implementation of Google's AI co-scientist syste
12
  ---
13
 
14
- # AI Co-Scientist - Hypothesis Evolution System (Gradio Version)
15
 
16
  This project implements an AI-powered system for generating, reviewing, ranking, and evolving research hypotheses using a multi-agent architecture and Large Language Models (LLMs). The user interface is built with Gradio for rapid prototyping and interactive research.
17
 
 
1
  ---
2
+ title: Open AI Co-Scientist
3
  emoji: πŸ“Š
4
  colorFrom: gray
5
  colorTo: gray
 
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
+ short_description: Open-source AI-enabled Research Hypothesis Evolution System
12
  ---
13
 
14
+ # Open AI Co-Scientist - Hypothesis Evolution System
15
 
16
  This project implements an AI-powered system for generating, reviewing, ranking, and evolving research hypotheses using a multi-agent architecture and Large Language Models (LLMs). The user interface is built with Gradio for rapid prototyping and interactive research.
17
 
README_HF.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: AI Co-Scientist
3
  emoji: πŸ”¬
4
  colorFrom: blue
5
  colorTo: green
@@ -11,7 +11,7 @@ license: mit
11
  short_description: Generate, review, rank, and evolve research hypotheses using AI agents
12
  ---
13
 
14
- # πŸ”¬ AI Co-Scientist - Hypothesis Evolution System
15
 
16
  An AI-powered system for generating, reviewing, ranking, and evolving research hypotheses using multiple AI agents. This system helps researchers explore research spaces and identify promising hypotheses through iterative refinement.
17
 
 
1
  ---
2
+ title: Open AI Co-Scientist
3
  emoji: πŸ”¬
4
  colorFrom: blue
5
  colorTo: green
 
11
  short_description: Generate, review, rank, and evolve research hypotheses using AI agents
12
  ---
13
 
14
+ # πŸ”¬ Open AI Co-Scientist - Hypothesis Evolution System
15
 
16
  An AI-powered system for generating, reviewing, ranking, and evolving research hypotheses using multiple AI agents. This system helps researchers explore research spaces and identify promising hypotheses through iterative refinement.
17
 
app/agents.py CHANGED
@@ -368,7 +368,7 @@ class MetaReviewAgent:
368
  return overview
369
 
370
  class SupervisorAgent:
371
- """Orchestrates the AI Co-Scientist workflow."""
372
  def __init__(self):
373
  self.generation_agent = GenerationAgent()
374
  self.reflection_agent = ReflectionAgent()
 
368
  return overview
369
 
370
  class SupervisorAgent:
371
+ """Orchestrates the Open AI Co-Scientist workflow."""
372
  def __init__(self):
373
  self.generation_agent = GenerationAgent()
374
  self.reflection_agent = ReflectionAgent()
docs/SOTA-ChatGPT-5-Pro.md CHANGED
@@ -231,4 +231,3 @@ A **research hypothesis** is a *testable, falsifiable claim* about a mechanism o
231
  [34]: https://www.nist.gov/news-events/news/2024/12/pre-deployment-evaluation-openais-o1-model?utm_source=chatgpt.com "Pre-Deployment Evaluation of OpenAI's o1 Model | NIST"
232
  [35]: https://www.microsoft.com/en-us/research/publication/causal-inference-using-llm-guided-discovery/?utm_source=chatgpt.com "Causal Inference Using LLM-Guided Discovery - microsoft.com"
233
  [36]: https://arxiv.org/abs/2402.11068?utm_source=chatgpt.com "[2402.11068] Large Language Models for Causal Discovery: Current ..."
234
-
 
231
  [34]: https://www.nist.gov/news-events/news/2024/12/pre-deployment-evaluation-openais-o1-model?utm_source=chatgpt.com "Pre-Deployment Evaluation of OpenAI's o1 Model | NIST"
232
  [35]: https://www.microsoft.com/en-us/research/publication/causal-inference-using-llm-guided-discovery/?utm_source=chatgpt.com "Causal Inference Using LLM-Guided Discovery - microsoft.com"
233
  [36]: https://arxiv.org/abs/2402.11068?utm_source=chatgpt.com "[2402.11068] Large Language Models for Causal Discovery: Current ..."
 
docs/TODO.md CHANGED
@@ -1,4 +1,4 @@
1
- # AI Co-Scientist - Prioritized Feature Roadmap
2
 
3
  This list outlines the top 10 priority features identified to make this system an indispensable tool for scientists and entrepreneurs.
4
 
 
1
+ # Open AI Co-Scientist - Prioritized Feature Roadmap
2
 
3
  This list outlines the top 10 priority features identified to make this system an indispensable tool for scientists and entrepreneurs.
4
 
docs/claude_planning.md CHANGED
@@ -1,7 +1,7 @@
1
- # AI Co-Scientist Enhancement Plan - Top 10 Priority Improvements
2
 
3
  ## Overview
4
- This document outlines the top 10 priority improvements for the AI Co-Scientist system based on comprehensive codebase analysis. The system is a multi-agent hypothesis generation and evolution platform that currently provides basic functionality but has significant potential for enhancement.
5
 
6
  ## Current System Analysis
7
  The existing system includes:
@@ -190,4 +190,4 @@ The existing system includes:
190
  - **Performance**: Profiling and optimization throughout development
191
  - **Safety**: Conservative defaults and user education
192
 
193
- This planning document provides a roadmap for transforming the current basic implementation into a production-ready, research-grade AI co-scientist system.
 
1
+ # Open AI Co-Scientist Enhancement Plan - Top 10 Priority Improvements
2
 
3
  ## Overview
4
+ This document outlines the top 10 priority improvements for the Open AI Co-Scientist system based on comprehensive codebase analysis. The system is a multi-agent hypothesis generation and evolution platform that currently provides basic functionality but has significant potential for enhancement.
5
 
6
  ## Current System Analysis
7
  The existing system includes:
 
190
  - **Performance**: Profiling and optimization throughout development
191
  - **Safety**: Conservative defaults and user education
192
 
193
+ This planning document provides a roadmap for transforming the current basic implementation into a production-ready, research-grade Open AI Co-Scientist system.
docs/deployment.md CHANGED
@@ -1,6 +1,6 @@
1
  # Deployment Guide: Cost Control for Hugging Face Spaces
2
 
3
- This guide covers strategies for deploying the AI Co-Scientist project to Hugging Face Spaces while controlling API costs from public usage.
4
 
5
  ## Problem Statement
6
 
@@ -259,7 +259,7 @@ CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
259
  Create `README.md` in root with HF Spaces header:
260
  ```yaml
261
  ---
262
- title: AI Co-Scientist
263
  emoji: πŸ”¬
264
  colorFrom: blue
265
  colorTo: green
@@ -311,7 +311,7 @@ iface = gr.Interface(
311
  ```python
312
  import streamlit as st
313
 
314
- st.title("AI Co-Scientist")
315
  goal = st.text_area("Research Goal")
316
  model = st.selectbox("Model", ALLOWED_MODELS)
317
 
@@ -342,4 +342,4 @@ if st.button("Generate Hypotheses"):
342
  3. **User Feedback**: Monitor for requests for additional models
343
  4. **Performance Monitoring**: Track response times and error rates
344
 
345
- This deployment strategy balances functionality with cost control, ensuring your AI Co-Scientist remains accessible to the public while protecting your budget.
 
1
  # Deployment Guide: Cost Control for Hugging Face Spaces
2
 
3
+ This guide covers strategies for deploying the Open AI Co-Scientist project to Hugging Face Spaces while controlling API costs from public usage.
4
 
5
  ## Problem Statement
6
 
 
259
  Create `README.md` in root with HF Spaces header:
260
  ```yaml
261
  ---
262
+ title: Open AI Co-Scientist
263
  emoji: πŸ”¬
264
  colorFrom: blue
265
  colorTo: green
 
311
  ```python
312
  import streamlit as st
313
 
314
+ st.title("Open AI Co-Scientist")
315
  goal = st.text_area("Research Goal")
316
  model = st.selectbox("Model", ALLOWED_MODELS)
317
 
 
342
  3. **User Feedback**: Monitor for requests for additional models
343
  4. **Performance Monitoring**: Track response times and error rates
344
 
345
+ This deployment strategy balances functionality with cost control, ensuring your Open AI Co-Scientist remains accessible to the public while protecting your budget.
docs/huggingface_deployment.md CHANGED
@@ -1,6 +1,6 @@
1
  # Hugging Face Spaces Deployment Guide
2
 
3
- This guide explains how to deploy the AI Co-Scientist system as a Gradio app on Hugging Face Spaces.
4
 
5
  ## πŸ“‹ Prerequisites
6
 
@@ -14,7 +14,7 @@ This guide explains how to deploy the AI Co-Scientist system as a Gradio app on
14
  1. Go to [Hugging Face Spaces](https://huggingface.co/spaces)
15
  2. Click "Create new Space"
16
  3. Fill in the details:
17
- - **Space name**: `ai-co-scientist` (or your preferred name)
18
  - **License**: MIT
19
  - **SDK**: Gradio
20
  - **Hardware**: CPU Basic (free tier is sufficient)
@@ -185,7 +185,7 @@ If you encounter issues:
185
 
186
  ## πŸŽ‰ Success!
187
 
188
- Once deployed, your AI Co-Scientist will be available at:
189
  `https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME`
190
 
191
  Users can now generate and evolve research hypotheses using your deployed system!
 
1
  # Hugging Face Spaces Deployment Guide
2
 
3
+ This guide explains how to deploy the Open AI Co-Scientist system as a Gradio app on Hugging Face Spaces.
4
 
5
  ## πŸ“‹ Prerequisites
6
 
 
14
  1. Go to [Hugging Face Spaces](https://huggingface.co/spaces)
15
  2. Click "Create new Space"
16
  3. Fill in the details:
17
+ - **Space name**: `open-ai-co-scientist` (or your preferred name)
18
  - **License**: MIT
19
  - **SDK**: Gradio
20
  - **Hardware**: CPU Basic (free tier is sufficient)
 
185
 
186
  ## πŸŽ‰ Success!
187
 
188
+ Once deployed, your Open AI Co-Scientist will be available at:
189
  `https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME`
190
 
191
  Users can now generate and evolve research hypotheses using your deployed system!
docs/plan.md CHANGED
@@ -1,8 +1,8 @@
1
- # Plan to Implement AI Co-Scientist Core Algorithms
2
 
3
  ## 1. Introduction
4
 
5
- **Goal:** Extend the existing Python codebase to implement the core algorithms and architecture of the AI co-scientist system as described in the paper "Towards an AI co-scientist" (Gottweis et al., 2025).
6
 
7
  **Current State:** The codebase provides a FastAPI web server with basic, sequential agent implementations (`Generation`, `Reflection`, `Ranking`, `Evolution`, `Proximity`, `MetaReview`) orchestrated by a `SupervisorAgent`. It includes data models (`Hypothesis`, `ResearchGoal`, `ContextMemory`) and API endpoints for setting goals and running cycles. LLM interaction is basic, relying on simple prompts for generation and review.
8
 
 
1
+ # Plan to Implement Open AI Co-Scientist Core Algorithms
2
 
3
  ## 1. Introduction
4
 
5
+ **Goal:** Extend the existing Python codebase to implement the core algorithms and architecture of the AI Co-Scientist system as described in the paper "Towards an AI Co-Scientist" (Gottweis et al., 2025).
6
 
7
  **Current State:** The codebase provides a FastAPI web server with basic, sequential agent implementations (`Generation`, `Reflection`, `Ranking`, `Evolution`, `Proximity`, `MetaReview`) orchestrated by a `SupervisorAgent`. It includes data models (`Hypothesis`, `ResearchGoal`, `ContextMemory`) and API endpoints for setting goals and running cycles. LLM interaction is basic, relying on simple prompts for generation and review.
8