File size: 5,903 Bytes
9de012e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import timm
import torch
import numpy as np
import torch.nn as nn
from einops import rearrange


def disabled_train(self, mode=True):
    """
    Overwrite model.train with this function to make sure train/eval mode does not change anymore
    """
    return self


def simple_conv_and_linear_weights_init(m):
    if type(m) in [
        nn.Conv1d,
        nn.Conv2d,
        nn.Conv3d,
        nn.ConvTranspose1d,
        nn.ConvTranspose2d,
        nn.ConvTranspose3d,
    ]:
        weight_shape = list(m.weight.data.size())
        fan_in = np.prod(weight_shape[1:4])
        fan_out = np.prod(weight_shape[2:4]) * weight_shape[0]
        w_bound = np.sqrt(6.0 / (fan_in + fan_out))
        m.weight.data.uniform_(-w_bound, w_bound)
        if m.bias is not None:
            m.bias.data.fill_(0)
    elif type(m) == nn.Linear:
        simple_linear_weights_init(m)

def simple_linear_weights_init(m):
    if type(m) == nn.Linear:
        weight_shape = list(m.weight.data.size())
        fan_in = weight_shape[1]
        fan_out = weight_shape[0]
        w_bound = np.sqrt(6.0 / (fan_in + fan_out))
        m.weight.data.uniform_(-w_bound, w_bound)
        if m.bias is not None:
            m.bias.data.fill_(0)


class Backbone2DWrapper(nn.Module):

    def __init__(self, model, tag, freeze=True):
        super().__init__()
        self.model = model
        self.tag = tag
        self.freeze = freeze
        if 'convnext' in tag:
            self.out_channels = 1024
        elif 'swin' in tag:
            self.out_channels = 1024
        elif 'vit' in tag:
            self.out_channels = 768
        elif 'resnet' in tag:
            self.out_channels = 2048
        else:
            raise NotImplementedError

        if freeze:
            for param in self.parameters():
                param.requires_grad = False
            self.eval()
            self.train = disabled_train

    def forward_normal(self, x, flat_output=False):
        feat = self.model.forward_features(x)
        if 'swin' in self.tag:
            feat = rearrange(feat, 'b h w c -> b c h w')
        if 'vit_base_32_timm_laion2b' in self.tag or 'vit_base_32_timm_openai' in self.tag:
            # TODO: [CLS] is prepended to the patches.
            feat = rearrange(feat[:, 1:], 'b (h w) c -> b c h w', h=7)
        if flat_output:
            feat = rearrange(feat, 'b c h w -> b (h w) c')
        return feat

    @torch.no_grad()
    def forward_frozen(self, x, flat_output=False):
        return self.forward_normal(x, flat_output)

    def forward(self, x, flat_output=False):
        if self.freeze:
            return self.forward_frozen(x, flat_output)
        else:
            return self.forward_normal(x, flat_output)
        
def convnext_base_laion2b(pretrained=False, freeze=True, **kwargs):
    m = timm.create_model(
        'convnext_base.clip_laion2b',
        pretrained=pretrained
    )
    if kwargs.get('reset_clip_s2b2'):
        s = m.state_dict()
        for i in s.keys():
            if 'stages.3.blocks.2' in i and ('weight' in i or 'bias' in i):
                s[i].normal_()
        m.load_state_dict(s, strict=True)

    return Backbone2DWrapper(m, 'convnext_base_laion2b', freeze=freeze)


class GridFeatureExtractor2D(nn.Module):
    def __init__(self, backbone_name='convnext_base', backbone_pretrain_dataset='laion2b', use_pretrain=True, freeze=True, pooling='avg'):
        super().__init__()

        init_func_name = '_'.join([backbone_name, backbone_pretrain_dataset])
        init_func = globals().get(init_func_name)
        if init_func and callable(init_func):
            self.backbone = init_func(pretrained=use_pretrain, freeze=freeze)
        else:
            raise NotImplementedError(f"Backbone2D does not support {init_func_name}")

        self.pooling = pooling
        if self.pooling:
            if self.pooling == 'avg':
                self.pooling_layers = nn.Sequential(
                    nn.AdaptiveAvgPool2d(output_size=(1,1)),
                    nn.Flatten()
                )
                self.out_channels = self.backbone.out_channels
            elif self.pooling == 'conv':
                self.pooling_layers = nn.Sequential(
                    nn.Conv2d(self.backbone.out_channels, 64, 1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(64, 32, 1),
                    nn.Flatten()
                )
                self.pooling_layers.apply(simple_conv_and_linear_weights_init)
                self.out_channels = 32 * 7 * 7   # hardcode for 224x224
            elif self.pooling in ['attn', 'attention']:
                self.visual_attention = nn.Sequential(
                    nn.Conv2d(self.backbone.out_channels, self.backbone.out_channels, 1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(self.backbone.out_channels, self.backbone.out_channels, 1),
                )
                self.visual_attention.apply(simple_conv_and_linear_weights_init)
                def _attention_pooling(x):
                    B, C, H, W = x.size()
                    attn = self.visual_attention(x)
                    attn = attn.view(B, C, -1)
                    x = x.view(B, C, -1)
                    attn = attn.softmax(dim=-1)
                    x = torch.einsum('b c n, b c n -> b c', x, x)
                    return x
                self.pooling_layers = _attention_pooling
                self.out_channels = self.backbone.out_channels
            else:
                raise NotImplementedError(f"Backbone2D does not support {self.pooling} pooling")
        else:
            self.out_channels = self.backbone.out_channels

    def forward(self, x):
        if self.pooling:
            x = self.backbone(x, flat_output=False)
            x = self.pooling_layers(x).unsqueeze(1)
            return x
        else:
            return self.backbone(x, flat_output=True)