Spaces:
Runtime error
Runtime error
File size: 8,454 Bytes
f4dac30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import sys
import abc
import math
import yaml
import torch
from torch.utils.tensorboard import SummaryWriter
from .option import default_hparas
from utils.util import human_format, Timer
from utils.load_yaml import HpsYaml
class BaseSolver():
'''
Prototype Solver for all kinds of tasks
Arguments
config - yaml-styled config
paras - argparse outcome
mode - "train"/"test"
'''
def __init__(self, config, paras, mode="train"):
# General Settings
self.config = config # load from yaml file
self.paras = paras # command line args
self.mode = mode # 'train' or 'test'
for k, v in default_hparas.items():
setattr(self, k, v)
self.device = torch.device('cuda') if self.paras.gpu and torch.cuda.is_available() \
else torch.device('cpu')
# Name experiment
self.exp_name = paras.name
if self.exp_name is None:
if 'exp_name' in self.config:
self.exp_name = self.config.exp_name
else:
# By default, exp is named after config file
self.exp_name = paras.config.split('/')[-1].replace('.yaml', '')
if mode == 'train':
self.exp_name += '_seed{}'.format(paras.seed)
if mode == 'train':
# Filepath setup
os.makedirs(paras.ckpdir, exist_ok=True)
self.ckpdir = os.path.join(paras.ckpdir, self.exp_name)
os.makedirs(self.ckpdir, exist_ok=True)
# Logger settings
self.logdir = os.path.join(paras.logdir, self.exp_name)
self.log = SummaryWriter(
self.logdir, flush_secs=self.TB_FLUSH_FREQ)
self.timer = Timer()
# Hyper-parameters
self.step = 0
self.valid_step = config.hparas.valid_step
self.max_step = config.hparas.max_step
self.verbose('Exp. name : {}'.format(self.exp_name))
self.verbose('Loading data... large corpus may took a while.')
# elif mode == 'test':
# # Output path
# os.makedirs(paras.outdir, exist_ok=True)
# self.ckpdir = os.path.join(paras.outdir, self.exp_name)
# Load training config to get acoustic feat and build model
# self.src_config = HpsYaml(config.src.config)
# self.paras.load = config.src.ckpt
# self.verbose('Evaluating result of tr. config @ {}'.format(
# config.src.config))
def backward(self, loss):
'''
Standard backward step with self.timer and debugger
Arguments
loss - the loss to perform loss.backward()
'''
self.timer.set()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.GRAD_CLIP)
if math.isnan(grad_norm):
self.verbose('Error : grad norm is NaN @ step '+str(self.step))
else:
self.optimizer.step()
self.timer.cnt('bw')
return grad_norm
def load_ckpt(self):
''' Load ckpt if --load option is specified '''
print(self.paras)
if self.paras.load is not None:
if self.paras.warm_start:
self.verbose(f"Warm starting model from checkpoint {self.paras.load}.")
ckpt = torch.load(
self.paras.load, map_location=self.device if self.mode == 'train'
else 'cpu')
model_dict = ckpt['model']
if "ignore_layers" in self.config.model and len(self.config.model.ignore_layers) > 0:
model_dict = {k:v for k, v in model_dict.items()
if k not in self.config.model.ignore_layers}
dummy_dict = self.model.state_dict()
dummy_dict.update(model_dict)
model_dict = dummy_dict
self.model.load_state_dict(model_dict)
else:
# Load weights
ckpt = torch.load(
self.paras.load, map_location=self.device if self.mode == 'train'
else 'cpu')
self.model.load_state_dict(ckpt['model'])
# Load task-dependent items
if self.mode == 'train':
self.step = ckpt['global_step']
self.optimizer.load_opt_state_dict(ckpt['optimizer'])
self.verbose('Load ckpt from {}, restarting at step {}'.format(
self.paras.load, self.step))
else:
for k, v in ckpt.items():
if type(v) is float:
metric, score = k, v
self.model.eval()
self.verbose('Evaluation target = {} (recorded {} = {:.2f} %)'.format(
self.paras.load, metric, score))
def verbose(self, msg):
''' Verbose function for print information to stdout'''
if self.paras.verbose:
if type(msg) == list:
for m in msg:
print('[INFO]', m.ljust(100))
else:
print('[INFO]', msg.ljust(100))
def progress(self, msg):
''' Verbose function for updating progress on stdout (do not include newline) '''
if self.paras.verbose:
sys.stdout.write("\033[K") # Clear line
print('[{}] {}'.format(human_format(self.step), msg), end='\r')
def write_log(self, log_name, log_dict):
'''
Write log to TensorBoard
log_name - <str> Name of tensorboard variable
log_value - <dict>/<array> Value of variable (e.g. dict of losses), passed if value = None
'''
if type(log_dict) is dict:
log_dict = {key: val for key, val in log_dict.items() if (
val is not None and not math.isnan(val))}
if log_dict is None:
pass
elif len(log_dict) > 0:
if 'align' in log_name or 'spec' in log_name:
img, form = log_dict
self.log.add_image(
log_name, img, global_step=self.step, dataformats=form)
elif 'text' in log_name or 'hyp' in log_name:
self.log.add_text(log_name, log_dict, self.step)
else:
self.log.add_scalars(log_name, log_dict, self.step)
def save_checkpoint(self, f_name, metric, score, show_msg=True):
''''
Ckpt saver
f_name - <str> the name of ckpt file (w/o prefix) to store, overwrite if existed
score - <float> The value of metric used to evaluate model
'''
ckpt_path = os.path.join(self.ckpdir, f_name)
full_dict = {
"model": self.model.state_dict(),
"optimizer": self.optimizer.get_opt_state_dict(),
"global_step": self.step,
metric: score
}
torch.save(full_dict, ckpt_path)
if show_msg:
self.verbose("Saved checkpoint (step = {}, {} = {:.2f}) and status @ {}".
format(human_format(self.step), metric, score, ckpt_path))
# ----------------------------------- Abtract Methods ------------------------------------------ #
@abc.abstractmethod
def load_data(self):
'''
Called by main to load all data
After this call, data related attributes should be setup (e.g. self.tr_set, self.dev_set)
No return value
'''
raise NotImplementedError
@abc.abstractmethod
def set_model(self):
'''
Called by main to set models
After this call, model related attributes should be setup (e.g. self.l2_loss)
The followings MUST be setup
- self.model (torch.nn.Module)
- self.optimizer (src.Optimizer),
init. w/ self.optimizer = src.Optimizer(self.model.parameters(),**self.config['hparas'])
Loading pre-trained model should also be performed here
No return value
'''
raise NotImplementedError
@abc.abstractmethod
def exec(self):
'''
Called by main to execute training/inference
'''
raise NotImplementedError
|