File size: 14,653 Bytes
f4dac30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .utils.mol_attention import MOLAttention
from .utils.basic_layers import Linear
from .utils.vc_utils import get_mask_from_lengths


class DecoderPrenet(nn.Module):
    def __init__(self, in_dim, sizes):
        super().__init__()
        in_sizes = [in_dim] + sizes[:-1]
        self.layers = nn.ModuleList(
            [Linear(in_size, out_size, bias=False)
             for (in_size, out_size) in zip(in_sizes, sizes)])

    def forward(self, x):
        for linear in self.layers:
            x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
        return x


class Decoder(nn.Module):
    """Mixture of Logistic (MoL) attention-based RNN Decoder."""
    def __init__(
        self,
        enc_dim,
        num_mels,
        frames_per_step,
        attention_rnn_dim,
        decoder_rnn_dim,
        prenet_dims,
        num_mixtures,
        encoder_down_factor=1,
        num_decoder_rnn_layer=1,
        use_stop_tokens=False,
        concat_context_to_last=False,
    ):
        super().__init__()
        self.enc_dim = enc_dim
        self.encoder_down_factor = encoder_down_factor
        self.num_mels = num_mels
        self.frames_per_step = frames_per_step
        self.attention_rnn_dim = attention_rnn_dim
        self.decoder_rnn_dim = decoder_rnn_dim
        self.prenet_dims = prenet_dims
        self.use_stop_tokens = use_stop_tokens
        self.num_decoder_rnn_layer = num_decoder_rnn_layer
        self.concat_context_to_last = concat_context_to_last

        # Mel prenet
        self.prenet = DecoderPrenet(num_mels, prenet_dims)
        self.prenet_pitch = DecoderPrenet(num_mels, prenet_dims)

        # Attention RNN
        self.attention_rnn = nn.LSTMCell(
            prenet_dims[-1] + enc_dim,
            attention_rnn_dim
        )
        
        # Attention
        self.attention_layer = MOLAttention(
            attention_rnn_dim,
            r=frames_per_step/encoder_down_factor,
            M=num_mixtures,
        )

        # Decoder RNN
        self.decoder_rnn_layers = nn.ModuleList()
        for i in range(num_decoder_rnn_layer):
            if i == 0:
                self.decoder_rnn_layers.append(
                    nn.LSTMCell(
                        enc_dim + attention_rnn_dim,
                        decoder_rnn_dim))
            else:
                self.decoder_rnn_layers.append(
                    nn.LSTMCell(
                        decoder_rnn_dim,
                        decoder_rnn_dim))
        # self.decoder_rnn = nn.LSTMCell(
            # 2 * enc_dim + attention_rnn_dim,
            # decoder_rnn_dim
        # )
        if concat_context_to_last:
            self.linear_projection = Linear(
                enc_dim + decoder_rnn_dim,
                num_mels * frames_per_step
            )
        else:
            self.linear_projection = Linear(
                decoder_rnn_dim,
                num_mels * frames_per_step
            )


        # Stop-token layer
        if self.use_stop_tokens:
            if concat_context_to_last:
                self.stop_layer = Linear(
                    enc_dim + decoder_rnn_dim, 1, bias=True, w_init_gain="sigmoid"
                )
            else:
                self.stop_layer = Linear(
                    decoder_rnn_dim, 1, bias=True, w_init_gain="sigmoid"
                )
                

    def get_go_frame(self, memory):
        B = memory.size(0)
        go_frame = torch.zeros((B, self.num_mels), dtype=torch.float,
                               device=memory.device)
        return go_frame

    def initialize_decoder_states(self, memory, mask):
        device = next(self.parameters()).device
        B = memory.size(0)
        
        # attention rnn states
        self.attention_hidden = torch.zeros(
            (B, self.attention_rnn_dim), device=device)
        self.attention_cell = torch.zeros(
            (B, self.attention_rnn_dim), device=device)

        # decoder rnn states
        self.decoder_hiddens = []
        self.decoder_cells = []
        for i in range(self.num_decoder_rnn_layer):
            self.decoder_hiddens.append(
                torch.zeros((B, self.decoder_rnn_dim),
                            device=device)
            )
            self.decoder_cells.append(
                torch.zeros((B, self.decoder_rnn_dim),
                            device=device)
            )
        # self.decoder_hidden = torch.zeros(
            # (B, self.decoder_rnn_dim), device=device)
        # self.decoder_cell = torch.zeros(
            # (B, self.decoder_rnn_dim), device=device)
        
        self.attention_context =  torch.zeros(
            (B, self.enc_dim), device=device)

        self.memory = memory
        # self.processed_memory = self.attention_layer.memory_layer(memory)
        self.mask = mask

    def parse_decoder_inputs(self, decoder_inputs):
        """Prepare decoder inputs, i.e. gt mel
        Args:
            decoder_inputs:(B, T_out, n_mel_channels) inputs used for teacher-forced training.
        """
        decoder_inputs = decoder_inputs.reshape(
            decoder_inputs.size(0),
            int(decoder_inputs.size(1)/self.frames_per_step), -1)
        # (B, T_out//r, r*num_mels) -> (T_out//r, B, r*num_mels)
        decoder_inputs = decoder_inputs.transpose(0, 1)
        # (T_out//r, B, num_mels)
        decoder_inputs = decoder_inputs[:,:,-self.num_mels:]
        return decoder_inputs
        
    def parse_decoder_outputs(self, mel_outputs, alignments, stop_outputs):
        """ Prepares decoder outputs for output
        Args:
            mel_outputs:
            alignments:
        """
        # (T_out//r, B, T_enc) -> (B, T_out//r, T_enc)
        alignments = torch.stack(alignments).transpose(0, 1)
        # (T_out//r, B) -> (B, T_out//r)
        if stop_outputs is not None:
            if alignments.size(0) == 1:
                stop_outputs = torch.stack(stop_outputs).unsqueeze(0)
            else:
                stop_outputs = torch.stack(stop_outputs).transpose(0, 1)
            stop_outputs = stop_outputs.contiguous()
        # (T_out//r, B, num_mels*r) -> (B, T_out//r, num_mels*r)
        mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
        # decouple frames per step
        # (B, T_out, num_mels)
        mel_outputs = mel_outputs.view(
            mel_outputs.size(0), -1, self.num_mels)
        return mel_outputs, alignments, stop_outputs     
    
    def attend(self, decoder_input):
        cell_input = torch.cat((decoder_input, self.attention_context), -1)
        self.attention_hidden, self.attention_cell = self.attention_rnn(
            cell_input, (self.attention_hidden, self.attention_cell))
        self.attention_context, attention_weights = self.attention_layer(
            self.attention_hidden, self.memory, None, self.mask)
        
        decoder_rnn_input = torch.cat(
            (self.attention_hidden, self.attention_context), -1)

        return decoder_rnn_input, self.attention_context, attention_weights

    def decode(self, decoder_input):
        for i in range(self.num_decoder_rnn_layer):
            if i == 0:
                self.decoder_hiddens[i], self.decoder_cells[i] = self.decoder_rnn_layers[i](
                    decoder_input, (self.decoder_hiddens[i], self.decoder_cells[i]))
            else:
                self.decoder_hiddens[i], self.decoder_cells[i] = self.decoder_rnn_layers[i](
                    self.decoder_hiddens[i-1], (self.decoder_hiddens[i], self.decoder_cells[i]))
        return self.decoder_hiddens[-1]
    
    def forward(self, memory, mel_inputs, memory_lengths):
        """ Decoder forward pass for training
        Args:
            memory: (B, T_enc, enc_dim) Encoder outputs
            decoder_inputs: (B, T, num_mels) Decoder inputs for teacher forcing.
            memory_lengths: (B, ) Encoder output lengths for attention masking.
        Returns:
            mel_outputs: (B, T, num_mels) mel outputs from the decoder
            alignments: (B, T//r, T_enc) attention weights.
        """
        # [1, B, num_mels]
        go_frame = self.get_go_frame(memory).unsqueeze(0)
        # [T//r, B, num_mels]
        mel_inputs = self.parse_decoder_inputs(mel_inputs)
        # [T//r + 1, B, num_mels]
        mel_inputs = torch.cat((go_frame, mel_inputs), dim=0)
        # [T//r + 1, B, prenet_dim]
        decoder_inputs = self.prenet(mel_inputs) 
        # decoder_inputs_pitch = self.prenet_pitch(decoder_inputs__)

        self.initialize_decoder_states(
            memory, mask=~get_mask_from_lengths(memory_lengths),
        )
        
        self.attention_layer.init_states(memory)
        # self.attention_layer_pitch.init_states(memory_pitch)

        mel_outputs, alignments = [], []
        if self.use_stop_tokens:
            stop_outputs = []
        else:
            stop_outputs = None
        while len(mel_outputs) < decoder_inputs.size(0) - 1:
            decoder_input = decoder_inputs[len(mel_outputs)]
            # decoder_input_pitch = decoder_inputs_pitch[len(mel_outputs)]

            decoder_rnn_input, context, attention_weights = self.attend(decoder_input)

            decoder_rnn_output = self.decode(decoder_rnn_input)
            if self.concat_context_to_last:    
                decoder_rnn_output = torch.cat(
                    (decoder_rnn_output, context), dim=1)
                   
            mel_output = self.linear_projection(decoder_rnn_output)
            if self.use_stop_tokens:
                stop_output = self.stop_layer(decoder_rnn_output)
                stop_outputs += [stop_output.squeeze()]
            mel_outputs += [mel_output.squeeze(1)] #? perhaps don't need squeeze
            alignments += [attention_weights]
            # alignments_pitch += [attention_weights_pitch]   

        mel_outputs, alignments, stop_outputs = self.parse_decoder_outputs(
            mel_outputs, alignments, stop_outputs)
        if stop_outputs is None:
            return mel_outputs, alignments
        else:
            return mel_outputs, stop_outputs, alignments

    def inference(self, memory, stop_threshold=0.5):
        """ Decoder inference
        Args:
            memory: (1, T_enc, D_enc) Encoder outputs
        Returns:
            mel_outputs: mel outputs from the decoder
            alignments: sequence of attention weights from the decoder
        """
        # [1, num_mels]
        decoder_input = self.get_go_frame(memory)

        self.initialize_decoder_states(memory, mask=None)

        self.attention_layer.init_states(memory)
        
        mel_outputs, alignments = [], []
        # NOTE(sx): heuristic 
        max_decoder_step = memory.size(1)*self.encoder_down_factor//self.frames_per_step 
        min_decoder_step = memory.size(1)*self.encoder_down_factor // self.frames_per_step - 5
        while True:
            decoder_input = self.prenet(decoder_input)

            decoder_input_final, context, alignment = self.attend(decoder_input)

            #mel_output, stop_output, alignment = self.decode(decoder_input)
            decoder_rnn_output = self.decode(decoder_input_final)
            if self.concat_context_to_last:    
                decoder_rnn_output = torch.cat(
                    (decoder_rnn_output, context), dim=1)
            
            mel_output = self.linear_projection(decoder_rnn_output)
            stop_output = self.stop_layer(decoder_rnn_output)
            
            mel_outputs += [mel_output.squeeze(1)]
            alignments += [alignment]
            
            if torch.sigmoid(stop_output.data) > stop_threshold and len(mel_outputs) >= min_decoder_step:
                break
            if len(mel_outputs) >= max_decoder_step:
                # print("Warning! Decoding steps reaches max decoder steps.")
                break

            decoder_input = mel_output[:,-self.num_mels:]


        mel_outputs, alignments, _  = self.parse_decoder_outputs(
            mel_outputs, alignments, None)

        return mel_outputs, alignments

    def inference_batched(self, memory, stop_threshold=0.5):
        """ Decoder inference
        Args:
            memory: (B, T_enc, D_enc) Encoder outputs
        Returns:
            mel_outputs: mel outputs from the decoder
            alignments: sequence of attention weights from the decoder
        """
        # [1, num_mels]
        decoder_input = self.get_go_frame(memory)

        self.initialize_decoder_states(memory, mask=None)

        self.attention_layer.init_states(memory)
        
        mel_outputs, alignments = [], []
        stop_outputs = []
        # NOTE(sx): heuristic 
        max_decoder_step = memory.size(1)*self.encoder_down_factor//self.frames_per_step 
        min_decoder_step = memory.size(1)*self.encoder_down_factor // self.frames_per_step - 5
        while True:
            decoder_input = self.prenet(decoder_input)

            decoder_input_final, context, alignment = self.attend(decoder_input)

            #mel_output, stop_output, alignment = self.decode(decoder_input)
            decoder_rnn_output = self.decode(decoder_input_final)
            if self.concat_context_to_last:    
                decoder_rnn_output = torch.cat(
                    (decoder_rnn_output, context), dim=1)
            
            mel_output = self.linear_projection(decoder_rnn_output)
            # (B, 1)
            stop_output = self.stop_layer(decoder_rnn_output)
            stop_outputs += [stop_output.squeeze()]
            # stop_outputs.append(stop_output) 

            mel_outputs += [mel_output.squeeze(1)]
            alignments += [alignment]
            # print(stop_output.shape)
            if torch.all(torch.sigmoid(stop_output.squeeze().data) > stop_threshold) \
                    and len(mel_outputs) >= min_decoder_step:
                break
            if len(mel_outputs) >= max_decoder_step:
                # print("Warning! Decoding steps reaches max decoder steps.")
                break

            decoder_input = mel_output[:,-self.num_mels:]


        mel_outputs, alignments, stop_outputs = self.parse_decoder_outputs(
            mel_outputs, alignments, stop_outputs)
        mel_outputs_stacked = []
        for mel, stop_logit in zip(mel_outputs, stop_outputs):
            idx = np.argwhere(torch.sigmoid(stop_logit.cpu()) > stop_threshold)[0][0].item()
            mel_outputs_stacked.append(mel[:idx,:])
        mel_outputs = torch.cat(mel_outputs_stacked, dim=0).unsqueeze(0)
        return mel_outputs, alignments