Spaces:
Runtime error
Runtime error
File size: 14,653 Bytes
f4dac30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from .utils.mol_attention import MOLAttention
from .utils.basic_layers import Linear
from .utils.vc_utils import get_mask_from_lengths
class DecoderPrenet(nn.Module):
def __init__(self, in_dim, sizes):
super().__init__()
in_sizes = [in_dim] + sizes[:-1]
self.layers = nn.ModuleList(
[Linear(in_size, out_size, bias=False)
for (in_size, out_size) in zip(in_sizes, sizes)])
def forward(self, x):
for linear in self.layers:
x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
return x
class Decoder(nn.Module):
"""Mixture of Logistic (MoL) attention-based RNN Decoder."""
def __init__(
self,
enc_dim,
num_mels,
frames_per_step,
attention_rnn_dim,
decoder_rnn_dim,
prenet_dims,
num_mixtures,
encoder_down_factor=1,
num_decoder_rnn_layer=1,
use_stop_tokens=False,
concat_context_to_last=False,
):
super().__init__()
self.enc_dim = enc_dim
self.encoder_down_factor = encoder_down_factor
self.num_mels = num_mels
self.frames_per_step = frames_per_step
self.attention_rnn_dim = attention_rnn_dim
self.decoder_rnn_dim = decoder_rnn_dim
self.prenet_dims = prenet_dims
self.use_stop_tokens = use_stop_tokens
self.num_decoder_rnn_layer = num_decoder_rnn_layer
self.concat_context_to_last = concat_context_to_last
# Mel prenet
self.prenet = DecoderPrenet(num_mels, prenet_dims)
self.prenet_pitch = DecoderPrenet(num_mels, prenet_dims)
# Attention RNN
self.attention_rnn = nn.LSTMCell(
prenet_dims[-1] + enc_dim,
attention_rnn_dim
)
# Attention
self.attention_layer = MOLAttention(
attention_rnn_dim,
r=frames_per_step/encoder_down_factor,
M=num_mixtures,
)
# Decoder RNN
self.decoder_rnn_layers = nn.ModuleList()
for i in range(num_decoder_rnn_layer):
if i == 0:
self.decoder_rnn_layers.append(
nn.LSTMCell(
enc_dim + attention_rnn_dim,
decoder_rnn_dim))
else:
self.decoder_rnn_layers.append(
nn.LSTMCell(
decoder_rnn_dim,
decoder_rnn_dim))
# self.decoder_rnn = nn.LSTMCell(
# 2 * enc_dim + attention_rnn_dim,
# decoder_rnn_dim
# )
if concat_context_to_last:
self.linear_projection = Linear(
enc_dim + decoder_rnn_dim,
num_mels * frames_per_step
)
else:
self.linear_projection = Linear(
decoder_rnn_dim,
num_mels * frames_per_step
)
# Stop-token layer
if self.use_stop_tokens:
if concat_context_to_last:
self.stop_layer = Linear(
enc_dim + decoder_rnn_dim, 1, bias=True, w_init_gain="sigmoid"
)
else:
self.stop_layer = Linear(
decoder_rnn_dim, 1, bias=True, w_init_gain="sigmoid"
)
def get_go_frame(self, memory):
B = memory.size(0)
go_frame = torch.zeros((B, self.num_mels), dtype=torch.float,
device=memory.device)
return go_frame
def initialize_decoder_states(self, memory, mask):
device = next(self.parameters()).device
B = memory.size(0)
# attention rnn states
self.attention_hidden = torch.zeros(
(B, self.attention_rnn_dim), device=device)
self.attention_cell = torch.zeros(
(B, self.attention_rnn_dim), device=device)
# decoder rnn states
self.decoder_hiddens = []
self.decoder_cells = []
for i in range(self.num_decoder_rnn_layer):
self.decoder_hiddens.append(
torch.zeros((B, self.decoder_rnn_dim),
device=device)
)
self.decoder_cells.append(
torch.zeros((B, self.decoder_rnn_dim),
device=device)
)
# self.decoder_hidden = torch.zeros(
# (B, self.decoder_rnn_dim), device=device)
# self.decoder_cell = torch.zeros(
# (B, self.decoder_rnn_dim), device=device)
self.attention_context = torch.zeros(
(B, self.enc_dim), device=device)
self.memory = memory
# self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
def parse_decoder_inputs(self, decoder_inputs):
"""Prepare decoder inputs, i.e. gt mel
Args:
decoder_inputs:(B, T_out, n_mel_channels) inputs used for teacher-forced training.
"""
decoder_inputs = decoder_inputs.reshape(
decoder_inputs.size(0),
int(decoder_inputs.size(1)/self.frames_per_step), -1)
# (B, T_out//r, r*num_mels) -> (T_out//r, B, r*num_mels)
decoder_inputs = decoder_inputs.transpose(0, 1)
# (T_out//r, B, num_mels)
decoder_inputs = decoder_inputs[:,:,-self.num_mels:]
return decoder_inputs
def parse_decoder_outputs(self, mel_outputs, alignments, stop_outputs):
""" Prepares decoder outputs for output
Args:
mel_outputs:
alignments:
"""
# (T_out//r, B, T_enc) -> (B, T_out//r, T_enc)
alignments = torch.stack(alignments).transpose(0, 1)
# (T_out//r, B) -> (B, T_out//r)
if stop_outputs is not None:
if alignments.size(0) == 1:
stop_outputs = torch.stack(stop_outputs).unsqueeze(0)
else:
stop_outputs = torch.stack(stop_outputs).transpose(0, 1)
stop_outputs = stop_outputs.contiguous()
# (T_out//r, B, num_mels*r) -> (B, T_out//r, num_mels*r)
mel_outputs = torch.stack(mel_outputs).transpose(0, 1).contiguous()
# decouple frames per step
# (B, T_out, num_mels)
mel_outputs = mel_outputs.view(
mel_outputs.size(0), -1, self.num_mels)
return mel_outputs, alignments, stop_outputs
def attend(self, decoder_input):
cell_input = torch.cat((decoder_input, self.attention_context), -1)
self.attention_hidden, self.attention_cell = self.attention_rnn(
cell_input, (self.attention_hidden, self.attention_cell))
self.attention_context, attention_weights = self.attention_layer(
self.attention_hidden, self.memory, None, self.mask)
decoder_rnn_input = torch.cat(
(self.attention_hidden, self.attention_context), -1)
return decoder_rnn_input, self.attention_context, attention_weights
def decode(self, decoder_input):
for i in range(self.num_decoder_rnn_layer):
if i == 0:
self.decoder_hiddens[i], self.decoder_cells[i] = self.decoder_rnn_layers[i](
decoder_input, (self.decoder_hiddens[i], self.decoder_cells[i]))
else:
self.decoder_hiddens[i], self.decoder_cells[i] = self.decoder_rnn_layers[i](
self.decoder_hiddens[i-1], (self.decoder_hiddens[i], self.decoder_cells[i]))
return self.decoder_hiddens[-1]
def forward(self, memory, mel_inputs, memory_lengths):
""" Decoder forward pass for training
Args:
memory: (B, T_enc, enc_dim) Encoder outputs
decoder_inputs: (B, T, num_mels) Decoder inputs for teacher forcing.
memory_lengths: (B, ) Encoder output lengths for attention masking.
Returns:
mel_outputs: (B, T, num_mels) mel outputs from the decoder
alignments: (B, T//r, T_enc) attention weights.
"""
# [1, B, num_mels]
go_frame = self.get_go_frame(memory).unsqueeze(0)
# [T//r, B, num_mels]
mel_inputs = self.parse_decoder_inputs(mel_inputs)
# [T//r + 1, B, num_mels]
mel_inputs = torch.cat((go_frame, mel_inputs), dim=0)
# [T//r + 1, B, prenet_dim]
decoder_inputs = self.prenet(mel_inputs)
# decoder_inputs_pitch = self.prenet_pitch(decoder_inputs__)
self.initialize_decoder_states(
memory, mask=~get_mask_from_lengths(memory_lengths),
)
self.attention_layer.init_states(memory)
# self.attention_layer_pitch.init_states(memory_pitch)
mel_outputs, alignments = [], []
if self.use_stop_tokens:
stop_outputs = []
else:
stop_outputs = None
while len(mel_outputs) < decoder_inputs.size(0) - 1:
decoder_input = decoder_inputs[len(mel_outputs)]
# decoder_input_pitch = decoder_inputs_pitch[len(mel_outputs)]
decoder_rnn_input, context, attention_weights = self.attend(decoder_input)
decoder_rnn_output = self.decode(decoder_rnn_input)
if self.concat_context_to_last:
decoder_rnn_output = torch.cat(
(decoder_rnn_output, context), dim=1)
mel_output = self.linear_projection(decoder_rnn_output)
if self.use_stop_tokens:
stop_output = self.stop_layer(decoder_rnn_output)
stop_outputs += [stop_output.squeeze()]
mel_outputs += [mel_output.squeeze(1)] #? perhaps don't need squeeze
alignments += [attention_weights]
# alignments_pitch += [attention_weights_pitch]
mel_outputs, alignments, stop_outputs = self.parse_decoder_outputs(
mel_outputs, alignments, stop_outputs)
if stop_outputs is None:
return mel_outputs, alignments
else:
return mel_outputs, stop_outputs, alignments
def inference(self, memory, stop_threshold=0.5):
""" Decoder inference
Args:
memory: (1, T_enc, D_enc) Encoder outputs
Returns:
mel_outputs: mel outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
# [1, num_mels]
decoder_input = self.get_go_frame(memory)
self.initialize_decoder_states(memory, mask=None)
self.attention_layer.init_states(memory)
mel_outputs, alignments = [], []
# NOTE(sx): heuristic
max_decoder_step = memory.size(1)*self.encoder_down_factor//self.frames_per_step
min_decoder_step = memory.size(1)*self.encoder_down_factor // self.frames_per_step - 5
while True:
decoder_input = self.prenet(decoder_input)
decoder_input_final, context, alignment = self.attend(decoder_input)
#mel_output, stop_output, alignment = self.decode(decoder_input)
decoder_rnn_output = self.decode(decoder_input_final)
if self.concat_context_to_last:
decoder_rnn_output = torch.cat(
(decoder_rnn_output, context), dim=1)
mel_output = self.linear_projection(decoder_rnn_output)
stop_output = self.stop_layer(decoder_rnn_output)
mel_outputs += [mel_output.squeeze(1)]
alignments += [alignment]
if torch.sigmoid(stop_output.data) > stop_threshold and len(mel_outputs) >= min_decoder_step:
break
if len(mel_outputs) >= max_decoder_step:
# print("Warning! Decoding steps reaches max decoder steps.")
break
decoder_input = mel_output[:,-self.num_mels:]
mel_outputs, alignments, _ = self.parse_decoder_outputs(
mel_outputs, alignments, None)
return mel_outputs, alignments
def inference_batched(self, memory, stop_threshold=0.5):
""" Decoder inference
Args:
memory: (B, T_enc, D_enc) Encoder outputs
Returns:
mel_outputs: mel outputs from the decoder
alignments: sequence of attention weights from the decoder
"""
# [1, num_mels]
decoder_input = self.get_go_frame(memory)
self.initialize_decoder_states(memory, mask=None)
self.attention_layer.init_states(memory)
mel_outputs, alignments = [], []
stop_outputs = []
# NOTE(sx): heuristic
max_decoder_step = memory.size(1)*self.encoder_down_factor//self.frames_per_step
min_decoder_step = memory.size(1)*self.encoder_down_factor // self.frames_per_step - 5
while True:
decoder_input = self.prenet(decoder_input)
decoder_input_final, context, alignment = self.attend(decoder_input)
#mel_output, stop_output, alignment = self.decode(decoder_input)
decoder_rnn_output = self.decode(decoder_input_final)
if self.concat_context_to_last:
decoder_rnn_output = torch.cat(
(decoder_rnn_output, context), dim=1)
mel_output = self.linear_projection(decoder_rnn_output)
# (B, 1)
stop_output = self.stop_layer(decoder_rnn_output)
stop_outputs += [stop_output.squeeze()]
# stop_outputs.append(stop_output)
mel_outputs += [mel_output.squeeze(1)]
alignments += [alignment]
# print(stop_output.shape)
if torch.all(torch.sigmoid(stop_output.squeeze().data) > stop_threshold) \
and len(mel_outputs) >= min_decoder_step:
break
if len(mel_outputs) >= max_decoder_step:
# print("Warning! Decoding steps reaches max decoder steps.")
break
decoder_input = mel_output[:,-self.num_mels:]
mel_outputs, alignments, stop_outputs = self.parse_decoder_outputs(
mel_outputs, alignments, stop_outputs)
mel_outputs_stacked = []
for mel, stop_logit in zip(mel_outputs, stop_outputs):
idx = np.argwhere(torch.sigmoid(stop_logit.cpu()) > stop_threshold)[0][0].item()
mel_outputs_stacked.append(mel[:idx,:])
mel_outputs = torch.cat(mel_outputs_stacked, dim=0).unsqueeze(0)
return mel_outputs, alignments
|