letijo03 commited on
Commit
fcb8cc9
·
verified ·
1 Parent(s): 0d922a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -1,15 +1,24 @@
1
- from flask import Flask, request, render_template_string, jsonify
2
- from transformers import AutoModelForSequenceClassification, XLMRobertaTokenizer
 
 
 
 
 
 
 
3
  import torch
 
4
 
5
 
6
  # Define the Flask app
7
  flask_app = Flask(__name__)
8
 
9
- # Load the pre-trained model and tokenizer
10
- MODEL_NAME = "letijo03/xlm-r-shopee"
11
- tokenizer = XLMRobertaTokenizer.from_pretrained(MODEL_NAME)
12
- model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
 
13
  model.eval() # Set the model to evaluation mode
14
 
15
  def classify_sentiment(text):
 
1
+ from flask import Flask, request, render_template_string, jsonify, send_from_directory
2
+ import requests
3
+ import pandas as pd
4
+ import re
5
+ import time
6
+ from random import randint, choice
7
+ import os
8
+ from transformers import XLMRobertaForSequenceClassification, XLMRobertaTokenizer
9
+ from peft import PeftModel, PeftConfig # Ensure peft library is installed
10
  import torch
11
+ from collections import defaultdict
12
 
13
 
14
  # Define the Flask app
15
  flask_app = Flask(__name__)
16
 
17
+ Load the base XLM-RoBERTa model with the correct number of labels (3 labels for classification)
18
+ tokenizer = XLMRobertaTokenizer.from_pretrained("letijo03/lora-adapter-32",use_fast=True, trust_remote_code=True)
19
+ base_model = XLMRobertaForSequenceClassification.from_pretrained("xlm-roberta-base", num_labels=3)
20
+ config = PeftConfig.from_pretrained("letijo03/lora-adapter-32")
21
+ model = PeftModel.from_pretrained(base_model, "letijo03/lora-adapter-32")
22
  model.eval() # Set the model to evaluation mode
23
 
24
  def classify_sentiment(text):