from fastapi import FastAPI, UploadFile, File import os import time import tempfile import warnings import soundfile as sf import torch from transformers import pipeline # Define FastAPI app app = FastAPI() # Basic GET endpoint @app.get("/") def read_root(): return {"message": "Welcome to the FastAPI app on Hugging Face Spaces!"} @app.post("/transcribe/") async def transcribe_audio(file: UploadFile = File(...)): start_time = time.time() # Save the uploaded file using a temporary file manager with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: temp_file_path = temp_audio_file.name temp_audio_file.write(await file.read()) # Transcribe the audio transcription_start = time.time() transcription = asr_pipeline(temp_file_path) transcription_end = time.time() # Clean up temporary file after use os.remove(temp_file_path) # Log time durations end_time = time.time() print(f"Time to transcribe audio: {transcription_end - transcription_start:.4f} seconds") print(f"Total execution time: {end_time - start_time:.4f} seconds") return {"transcription": transcription['text']} # If running as the main module, start Uvicorn if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)