File size: 1,334 Bytes
d248be2 3619068 10e3086 8d7f55f e32fd5c edf3685 16d2214 edf3685 e32fd5c 4652073 e32fd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from fastapi import FastAPI, UploadFile, File
import os
import time
import tempfile
import warnings
import soundfile as sf
import torch
from transformers import pipeline
# Define FastAPI app
app = FastAPI()
# Basic GET endpoint
@app.get("/")
def read_root():
return {"message": "Welcome to the FastAPI app on Hugging Face Spaces!"}
@app.post("/transcribe/")
async def transcribe_audio(file: UploadFile = File(...)):
start_time = time.time()
# Save the uploaded file using a temporary file manager
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_file_path = temp_audio_file.name
temp_audio_file.write(await file.read())
# Transcribe the audio
transcription_start = time.time()
transcription = asr_pipeline(temp_file_path)
transcription_end = time.time()
# Clean up temporary file after use
os.remove(temp_file_path)
# Log time durations
end_time = time.time()
print(f"Time to transcribe audio: {transcription_end - transcription_start:.4f} seconds")
print(f"Total execution time: {end_time - start_time:.4f} seconds")
return {"transcription": transcription['text']}
# If running as the main module, start Uvicorn
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|