File size: 1,582 Bytes
d248be2
b9cd341
 
 
3619068
 
8d7f55f
e32fd5c
edf3685
16d2214
b9cd341
 
 
 
edf3685
 
 
 
e32fd5c
b9cd341
4652073
 
 
 
 
 
 
b9cd341
4652073
 
 
b9cd341
4652073
 
 
 
 
 
 
 
 
 
 
b9cd341
e32fd5c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from fastapi import FastAPI, UploadFile, File
from transformers import pipeline
import torch
import tempfile
import os
import time

# Define FastAPI app
app = FastAPI()

# Load the Whisper model once during startup
device = 0 if torch.cuda.is_available() else -1  # Use GPU if available, otherwise CPU
asr_pipeline = pipeline(model="openai/whisper-small", device=device)  # Initialize Whisper model

# Basic GET endpoint
@app.get("/")
def read_root():
    return {"message": "Welcome to the FastAPI app on Hugging Face Spaces!"}

# POST endpoint to transcribe audio
@app.post("/transcribe/")
async def transcribe_audio(file: UploadFile = File(...)):
    start_time = time.time()

    # Save the uploaded file using a temporary file manager
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
        temp_audio_file.write(await file.read())
        temp_file_path = temp_audio_file.name

    # Transcribe the audio
    transcription_start = time.time()
    transcription = asr_pipeline(temp_file_path)  # Call the ASR pipeline
    transcription_end = time.time()

    # Clean up temporary file after use
    os.remove(temp_file_path)

    # Log time durations
    end_time = time.time()
    print(f"Time to transcribe audio: {transcription_end - transcription_start:.4f} seconds")
    print(f"Total execution time: {end_time - start_time:.4f} seconds")

    return {"transcription": transcription['text']}

# If running as the main module, start Uvicorn
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)