Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| """ | |
| Main model for using AudioGen. This will combine all the required components | |
| and provide easy access to the generation API. | |
| """ | |
| import typing as tp | |
| import torch | |
| from .encodec import CompressionModel | |
| from .lm import LMModel | |
| from .builders import get_debug_compression_model, get_debug_lm_model | |
| from .loaders import load_compression_model, load_lm_model | |
| from ..data.audio_utils import convert_audio | |
| from ..modules.conditioners import ConditioningAttributes | |
| from ..utils.autocast import TorchAutocast | |
| class AudioGen: | |
| """AudioGen main model with convenient generation API. | |
| Args: | |
| name (str): name of the model. | |
| compression_model (CompressionModel): Compression model | |
| used to map audio to invertible discrete representations. | |
| lm (LMModel): Language model over discrete representations. | |
| max_duration (float, optional): maximum duration the model can produce, | |
| otherwise, inferred from the training params. | |
| """ | |
| def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel, | |
| max_duration: tp.Optional[float] = None): | |
| self.name = name | |
| self.compression_model = compression_model | |
| self.lm = lm | |
| # Just to be safe, let's put everything in eval mode. | |
| self.compression_model.eval() | |
| self.lm.eval() | |
| if max_duration is None: | |
| if hasattr(lm, 'cfg'): | |
| max_duration = lm.cfg.dataset.segment_duration # type: ignore | |
| else: | |
| raise ValueError("You must provide max_duration when building directly AudioGen") | |
| assert max_duration is not None | |
| self.max_duration: float = max_duration | |
| self.device = next(iter(lm.parameters())).device | |
| self.generation_params: dict = {} | |
| self.set_generation_params(duration=5) # 5 seconds by default | |
| self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None | |
| if self.device.type == 'cpu': | |
| self.autocast = TorchAutocast(enabled=False) | |
| else: | |
| self.autocast = TorchAutocast( | |
| enabled=True, device_type=self.device.type, dtype=torch.float16) | |
| def frame_rate(self) -> float: | |
| """Roughly the number of AR steps per seconds.""" | |
| return self.compression_model.frame_rate | |
| def sample_rate(self) -> int: | |
| """Sample rate of the generated audio.""" | |
| return self.compression_model.sample_rate | |
| def audio_channels(self) -> int: | |
| """Audio channels of the generated audio.""" | |
| return self.compression_model.channels | |
| def get_pretrained(name: str = 'facebook/audiogen-medium', device=None): | |
| """Return pretrained model, we provide a single model for now: | |
| - facebook/audiogen-medium (1.5B), text to sound, | |
| # see: https://huggingface.co/facebook/audiogen-medium | |
| """ | |
| if device is None: | |
| if torch.cuda.device_count(): | |
| device = 'cuda' | |
| else: | |
| device = 'cpu' | |
| if name == 'debug': | |
| # used only for unit tests | |
| compression_model = get_debug_compression_model(device, sample_rate=16000) | |
| lm = get_debug_lm_model(device) | |
| return AudioGen(name, compression_model, lm, max_duration=10) | |
| compression_model = load_compression_model(name, device=device) | |
| lm = load_lm_model(name, device=device) | |
| assert 'self_wav' not in lm.condition_provider.conditioners, \ | |
| "AudioGen do not support waveform conditioning for now" | |
| return AudioGen(name, compression_model, lm) | |
| def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, | |
| top_p: float = 0.0, temperature: float = 1.0, | |
| duration: float = 10.0, cfg_coef: float = 3.0, | |
| two_step_cfg: bool = False, extend_stride: float = 2): | |
| """Set the generation parameters for AudioGen. | |
| Args: | |
| use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True. | |
| top_k (int, optional): top_k used for sampling. Defaults to 250. | |
| top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0. | |
| temperature (float, optional): Softmax temperature parameter. Defaults to 1.0. | |
| duration (float, optional): Duration of the generated waveform. Defaults to 10.0. | |
| cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0. | |
| two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance, | |
| instead of batching together the two. This has some impact on how things | |
| are padded but seems to have little impact in practice. | |
| extend_stride: when doing extended generation (i.e. more than 10 seconds), by how much | |
| should we extend the audio each time. Larger values will mean less context is | |
| preserved, and shorter value will require extra computations. | |
| """ | |
| assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration." | |
| self.extend_stride = extend_stride | |
| self.duration = duration | |
| self.generation_params = { | |
| 'use_sampling': use_sampling, | |
| 'temp': temperature, | |
| 'top_k': top_k, | |
| 'top_p': top_p, | |
| 'cfg_coef': cfg_coef, | |
| 'two_step_cfg': two_step_cfg, | |
| } | |
| def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None): | |
| """Override the default progress callback.""" | |
| self._progress_callback = progress_callback | |
| def generate(self, descriptions: tp.List[str], progress: bool = False) -> torch.Tensor: | |
| """Generate samples conditioned on text. | |
| Args: | |
| descriptions (list of str): A list of strings used as text conditioning. | |
| progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
| """ | |
| attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) | |
| assert prompt_tokens is None | |
| return self._generate_tokens(attributes, prompt_tokens, progress) | |
| def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int, | |
| descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None, | |
| progress: bool = False) -> torch.Tensor: | |
| """Generate samples conditioned on audio prompts. | |
| Args: | |
| prompt (torch.Tensor): A batch of waveforms used for continuation. | |
| Prompt should be [B, C, T], or [C, T] if only one sample is generated. | |
| prompt_sample_rate (int): Sampling rate of the given audio waveforms. | |
| descriptions (list of str, optional): A list of strings used as text conditioning. Defaults to None. | |
| progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
| """ | |
| if prompt.dim() == 2: | |
| prompt = prompt[None] | |
| if prompt.dim() != 3: | |
| raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).") | |
| prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, self.audio_channels) | |
| if descriptions is None: | |
| descriptions = [None] * len(prompt) | |
| attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt) | |
| assert prompt_tokens is not None | |
| return self._generate_tokens(attributes, prompt_tokens, progress) | |
| def _prepare_tokens_and_attributes( | |
| self, | |
| descriptions: tp.Sequence[tp.Optional[str]], | |
| prompt: tp.Optional[torch.Tensor], | |
| ) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]: | |
| """Prepare model inputs. | |
| Args: | |
| descriptions (list of str): A list of strings used as text conditioning. | |
| prompt (torch.Tensor): A batch of waveforms used for continuation. | |
| """ | |
| attributes = [ | |
| ConditioningAttributes(text={'description': description}) | |
| for description in descriptions] | |
| if prompt is not None: | |
| if descriptions is not None: | |
| assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match" | |
| prompt = prompt.to(self.device) | |
| prompt_tokens, scale = self.compression_model.encode(prompt) | |
| assert scale is None | |
| else: | |
| prompt_tokens = None | |
| return attributes, prompt_tokens | |
| def _generate_tokens(self, attributes: tp.List[ConditioningAttributes], | |
| prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor: | |
| """Generate discrete audio tokens given audio prompt and/or conditions. | |
| Args: | |
| attributes (list of ConditioningAttributes): Conditions used for generation (here text). | |
| prompt_tokens (torch.Tensor, optional): Audio prompt used for continuation. | |
| progress (bool, optional): Flag to display progress of the generation process. Defaults to False. | |
| Returns: | |
| torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params. | |
| """ | |
| total_gen_len = int(self.duration * self.frame_rate) | |
| max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate) | |
| current_gen_offset: int = 0 | |
| def _progress_callback(generated_tokens: int, tokens_to_generate: int): | |
| generated_tokens += current_gen_offset | |
| if self._progress_callback is not None: | |
| # Note that total_gen_len might be quite wrong depending on the | |
| # codebook pattern used, but with delay it is almost accurate. | |
| self._progress_callback(generated_tokens, total_gen_len) | |
| else: | |
| print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r') | |
| if prompt_tokens is not None: | |
| assert max_prompt_len >= prompt_tokens.shape[-1], \ | |
| "Prompt is longer than audio to generate" | |
| callback = None | |
| if progress: | |
| callback = _progress_callback | |
| if self.duration <= self.max_duration: | |
| # generate by sampling from LM, simple case. | |
| with self.autocast: | |
| gen_tokens = self.lm.generate( | |
| prompt_tokens, attributes, | |
| callback=callback, max_gen_len=total_gen_len, **self.generation_params) | |
| else: | |
| all_tokens = [] | |
| if prompt_tokens is None: | |
| prompt_length = 0 | |
| else: | |
| all_tokens.append(prompt_tokens) | |
| prompt_length = prompt_tokens.shape[-1] | |
| stride_tokens = int(self.frame_rate * self.extend_stride) | |
| while current_gen_offset + prompt_length < total_gen_len: | |
| time_offset = current_gen_offset / self.frame_rate | |
| chunk_duration = min(self.duration - time_offset, self.max_duration) | |
| max_gen_len = int(chunk_duration * self.frame_rate) | |
| with self.autocast: | |
| gen_tokens = self.lm.generate( | |
| prompt_tokens, attributes, | |
| callback=callback, max_gen_len=max_gen_len, **self.generation_params) | |
| if prompt_tokens is None: | |
| all_tokens.append(gen_tokens) | |
| else: | |
| all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:]) | |
| prompt_tokens = gen_tokens[:, :, stride_tokens:] | |
| prompt_length = prompt_tokens.shape[-1] | |
| current_gen_offset += stride_tokens | |
| gen_tokens = torch.cat(all_tokens, dim=-1) | |
| # generate audio | |
| assert gen_tokens.dim() == 3 | |
| with torch.no_grad(): | |
| gen_audio = self.compression_model.decode(gen_tokens, None) | |
| return gen_audio | |