import gradio as gr import torch from PIL import Image from torchvision import transforms import numpy as np import random import torch.nn as nn from torch.utils.data import DataLoader, Dataset from torchvision.models.resnet import ResNet50_Weights from typing import Type, Any, Callable, Union, List, Optional from torch import Tensor from huggingface_hub import hf_hub_download username = "leandrumartin" model_repo = "assignment2model" model_path = hf_hub_download(repo_id=f"{username}/{model_repo}", filename="clothing1m.pth") CATEGORY_NAMES = ['T-Shirt', 'Shirt', 'Knitwear', 'Chiffon', 'Sweater', 'Hoodie', 'Windbreaker', 'Jacket', 'Downcoat', 'Suit', 'Shawl', 'Dress', 'Vest', 'Underwear'] def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion: int = 4 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, show: bool = False, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.show = show self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError( "replace_stride_with_dilation should be None " f"or a 3-element tuple, got {replace_stride_with_dilation}" ) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) # self.fc1 = nn.Linear(512 * block.expansion, 512) # self.lu = nn.LeakyReLU(0.1, inplace=True) # self.fc2 = nn.Linear(512, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck) and m.bn3.weight is not None: nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock) and m.bn2.weight is not None: nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer( self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False, ) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, ) ) return nn.Sequential(*layers) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) out = self.fc(x) # x = self.lu(self.fc1(x)) # out = self.fc2(x) if self.show: return out, x else: return out def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x) def _resnet( block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes, show, **kwargs: Any, ) -> ResNet: model = ResNet(block, layers, num_classes, show, **kwargs) return model def resnet50(num_classes, show=False, **kwargs: Any) -> ResNet: """ResNet-50 from `Deep Residual Learning for Image Recognition `__. .. note:: The bottleneck of TorchVision places the stride for downsampling to the second 3x3 convolution while the original paper places it to the first 1x1 convolution. This variant improves the accuracy and is known as `ResNet V1.5 `_. Args: weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The pretrained weights to use. See :class:`~torchvision.models.ResNet50_Weights` below for more details, and possible values. By default, no pre-trained weights are used. progress (bool, optional): If True, displays a progress bar of the download to stderr. Default is True. **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` base class. Please refer to the `source code `_ for more details about this class. .. autoclass:: torchvision.models.ResNet50_Weights :members: """ return _resnet(Bottleneck, [3, 4, 6, 3], num_classes, show, **kwargs) class Clothing1M(Dataset): def __init__(self, image, train=True, transform=None, target_transform=None, augment=False, mode='noisy'): self.image = image self.transform = transform self.target_transform = target_transform self.augment = augment self.train = False self.mode = mode self.data = [self.image] def __getitem__(self, index): img, target = self.data[index], 0 # to return a PIL Image # img_origin = Image.open(img).convert('RGB') img_origin = Image.fromarray(img).convert('RGB') if self.transform is not None: img = self.transform(img_origin) if self.augment: img1 = self.transform(img_origin) if self.target_transform is not None: target = self.target_transform(target) return img, 0 def __len__(self): return len(self.data) def set_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def preprocess_image(image): pass def classify_image(image): args = { 'overwrite': False, 'tqdm': 0, 'config_file': 'configs/clothing1m.yaml', 'dataset': 'clothing1M', 'root': './data', 'noise_type': 'clean', 'noise_rate': 0.0, 'save_dir': None, 'gpus': '0', 'num_workers': 8, 'grad_bound': 0.0, 'seed': 233, 'backbone': 'res50', 'optimizer': 'sgd', 'momentum': 0.9, 'nesterov': False, 'pretrained': True, 'ssl_pretrained': None, 'resume': model_path, 'lr': 0.01, 'scheduler': 'cos', 'milestones': None, 'gamma': None, 'weight_decay': 0.0001, 'batch_size': 128, 'start_epoch': None, 'epochs': 100, 'warmup': 0, 'ema': False, 'beta': 1.0, 'num_classes': 14, } device = 'cpu' set_seed(args['seed']) MEAN = (0.485, 0.456, 0.406) STD = (0.229, 0.224, 0.225) test_loader = DataLoader( dataset=Clothing1M( image=image, train=False, transform=transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(MEAN, STD)] )), batch_size=256, shuffle=False, pin_memory=True, num_workers=args['num_workers']) model = resnet50(num_classes=args['num_classes'], show=True) nFeat = 2048 state_dict = ResNet50_Weights.IMAGENET1K_V2.get_state_dict(progress=True) state_dict = {k:v for k,v in state_dict.items() if 'fc' not in k} missing, unexpected = model.load_state_dict(state_dict, strict=False) print('Loading ImageNet pretrained model') print('Model missing keys:\n', missing) print('Model unexpected keys:\n', unexpected) checkpoint = torch.load(args['resume'], map_location=torch.device(device)) state_dict = checkpoint['model_state_dict'] for key in list(state_dict.keys()): if 'ema_model' in key: state_dict[key.replace('ema_model.', '')] = state_dict[key] del state_dict[key] else: del state_dict[key] model.load_state_dict(state_dict) epoch = checkpoint['epoch'] if args['start_epoch'] is None: args['start_epoch'] = epoch + 1 model = model.to(device) loader_x, loader_y = None, None for x, y in test_loader: print(x) print(y) loader_x, loader_y = x.to(device), y.to(device) break z, _ = model(loader_x) pred = torch.argmax(z, 1) prediction_label = CATEGORY_NAMES[pred.item()] return f'Predicted label: {prediction_label}' # Example image query (optional but recommended for demonstration) example_image = "./examples/image_0.jpg" # Ensure this image is available in the repo example_image_2 = "./examples/image_7.jpg" # Create Gradio interface interface = gr.Interface( fn=classify_image, inputs=gr.Image(), outputs=gr.Text(), examples=[example_image, example_image_2] # Include an example input for users -- you will want to find a relevant image to include and push it to your HuggingFace Space ) if __name__ == "__main__": interface.launch()