Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from PIL import Image | |
from torchvision import transforms | |
import numpy as np | |
import random | |
import torch.nn as nn | |
from torch.utils.data import DataLoader, Dataset | |
from torchvision.models.resnet import ResNet50_Weights | |
from typing import Type, Any, Callable, Union, List, Optional | |
from torch import Tensor | |
from huggingface_hub import hf_hub_download | |
username = "leandrumartin" | |
model_repo = "assignment2model" | |
model_path = hf_hub_download(repo_id=f"{username}/{model_repo}", filename="clothing1m.pth") | |
CATEGORY_NAMES = ['T-Shirt', 'Shirt', 'Knitwear', 'Chiffon', 'Sweater', 'Hoodie', 'Windbreaker', 'Jacket', 'Downcoat', 'Suit', 'Shawl', 'Dress', 'Vest', 'Underwear'] | |
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: | |
"""3x3 convolution with padding""" | |
return nn.Conv2d( | |
in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
groups=groups, | |
bias=False, | |
dilation=dilation, | |
) | |
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion: int = 1 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None, | |
) -> None: | |
super().__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError("BasicBlock only supports groups=1 and base_width=64") | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) | |
# while original implementation places the stride at the first 1x1 convolution(self.conv1) | |
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. | |
# This variant is also known as ResNet V1.5 and improves accuracy according to | |
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. | |
expansion: int = 4 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None, | |
) -> None: | |
super().__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
width = int(planes * (base_width / 64.0)) * groups | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, width) | |
self.bn1 = norm_layer(width) | |
self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
self.bn2 = norm_layer(width) | |
self.conv3 = conv1x1(width, planes * self.expansion) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
layers: List[int], | |
num_classes: int = 1000, | |
show: bool = False, | |
zero_init_residual: bool = False, | |
groups: int = 1, | |
width_per_group: int = 64, | |
replace_stride_with_dilation: Optional[List[bool]] = None, | |
norm_layer: Optional[Callable[..., nn.Module]] = None, | |
) -> None: | |
super().__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self._norm_layer = norm_layer | |
self.show = show | |
self.inplanes = 64 | |
self.dilation = 1 | |
if replace_stride_with_dilation is None: | |
# each element in the tuple indicates if we should replace | |
# the 2x2 stride with a dilated convolution instead | |
replace_stride_with_dilation = [False, False, False] | |
if len(replace_stride_with_dilation) != 3: | |
raise ValueError( | |
"replace_stride_with_dilation should be None " | |
f"or a 3-element tuple, got {replace_stride_with_dilation}" | |
) | |
self.groups = groups | |
self.base_width = width_per_group | |
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
# self.fc1 = nn.Linear(512 * block.expansion, 512) | |
# self.lu = nn.LeakyReLU(0.1, inplace=True) | |
# self.fc2 = nn.Linear(512, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, | |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck) and m.bn3.weight is not None: | |
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] | |
elif isinstance(m, BasicBlock) and m.bn2.weight is not None: | |
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] | |
def _make_layer( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
planes: int, | |
blocks: int, | |
stride: int = 1, | |
dilate: bool = False, | |
) -> nn.Sequential: | |
norm_layer = self._norm_layer | |
downsample = None | |
previous_dilation = self.dilation | |
if dilate: | |
self.dilation *= stride | |
stride = 1 | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer | |
) | |
) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
groups=self.groups, | |
base_width=self.base_width, | |
dilation=self.dilation, | |
norm_layer=norm_layer, | |
) | |
) | |
return nn.Sequential(*layers) | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
# See note [TorchScript super()] | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.avgpool(x) | |
x = torch.flatten(x, 1) | |
out = self.fc(x) | |
# x = self.lu(self.fc1(x)) | |
# out = self.fc2(x) | |
if self.show: | |
return out, x | |
else: | |
return out | |
def forward(self, x: Tensor) -> Tensor: | |
return self._forward_impl(x) | |
def _resnet( | |
block: Type[Union[BasicBlock, Bottleneck]], | |
layers: List[int], | |
num_classes, | |
show, | |
**kwargs: Any, | |
) -> ResNet: | |
model = ResNet(block, layers, num_classes, show, **kwargs) | |
return model | |
def resnet50(num_classes, show=False, **kwargs: Any) -> ResNet: | |
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__. | |
.. note:: | |
The bottleneck of TorchVision places the stride for downsampling to the second 3x3 | |
convolution while the original paper places it to the first 1x1 convolution. | |
This variant improves the accuracy and is known as `ResNet V1.5 | |
<https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch>`_. | |
Args: | |
weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The | |
pretrained weights to use. See | |
:class:`~torchvision.models.ResNet50_Weights` below for | |
more details, and possible values. By default, no pre-trained | |
weights are used. | |
progress (bool, optional): If True, displays a progress bar of the | |
download to stderr. Default is True. | |
**kwargs: parameters passed to the ``torchvision.models.resnet.ResNet`` | |
base class. Please refer to the `source code | |
<https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_ | |
for more details about this class. | |
.. autoclass:: torchvision.models.ResNet50_Weights | |
:members: | |
""" | |
return _resnet(Bottleneck, [3, 4, 6, 3], num_classes, show, **kwargs) | |
class Clothing1M(Dataset): | |
def __init__(self, image, train=True, transform=None, target_transform=None, augment=False, mode='noisy'): | |
self.image = image | |
self.transform = transform | |
self.target_transform = target_transform | |
self.augment = augment | |
self.train = False | |
self.mode = mode | |
self.data = [self.image] | |
def __getitem__(self, index): | |
img, target = self.data[index], 0 | |
# to return a PIL Image | |
# img_origin = Image.open(img).convert('RGB') | |
img_origin = Image.fromarray(img).convert('RGB') | |
if self.transform is not None: | |
img = self.transform(img_origin) | |
if self.augment: | |
img1 = self.transform(img_origin) | |
if self.target_transform is not None: | |
target = self.target_transform(target) | |
return img, 0 | |
def __len__(self): | |
return len(self.data) | |
def set_seed(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def preprocess_image(image): | |
pass | |
def classify_image(image): | |
args = { | |
'overwrite': False, | |
'tqdm': 0, | |
'config_file': 'configs/clothing1m.yaml', | |
'dataset': 'clothing1M', | |
'root': './data', | |
'noise_type': 'clean', | |
'noise_rate': 0.0, | |
'save_dir': None, | |
'gpus': '0', | |
'num_workers': 8, | |
'grad_bound': 0.0, | |
'seed': 233, | |
'backbone': 'res50', | |
'optimizer': 'sgd', | |
'momentum': 0.9, | |
'nesterov': False, | |
'pretrained': True, | |
'ssl_pretrained': None, | |
'resume': model_path, | |
'lr': 0.01, | |
'scheduler': 'cos', | |
'milestones': None, | |
'gamma': None, | |
'weight_decay': 0.0001, | |
'batch_size': 128, | |
'start_epoch': None, | |
'epochs': 100, | |
'warmup': 0, | |
'ema': False, | |
'beta': 1.0, | |
'num_classes': 14, | |
} | |
device = 'cpu' | |
set_seed(args['seed']) | |
MEAN = (0.485, 0.456, 0.406) | |
STD = (0.229, 0.224, 0.225) | |
test_loader = DataLoader( | |
dataset=Clothing1M( | |
image=image, | |
train=False, | |
transform=transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(MEAN, STD)] | |
)), | |
batch_size=256, | |
shuffle=False, | |
pin_memory=True, | |
num_workers=args['num_workers']) | |
model = resnet50(num_classes=args['num_classes'], show=True) | |
nFeat = 2048 | |
state_dict = ResNet50_Weights.IMAGENET1K_V2.get_state_dict(progress=True) | |
state_dict = {k:v for k,v in state_dict.items() if 'fc' not in k} | |
missing, unexpected = model.load_state_dict(state_dict, strict=False) | |
print('Loading ImageNet pretrained model') | |
print('Model missing keys:\n', missing) | |
print('Model unexpected keys:\n', unexpected) | |
checkpoint = torch.load(args['resume'], map_location=torch.device(device)) | |
state_dict = checkpoint['model_state_dict'] | |
for key in list(state_dict.keys()): | |
if 'ema_model' in key: | |
state_dict[key.replace('ema_model.', '')] = state_dict[key] | |
del state_dict[key] | |
else: | |
del state_dict[key] | |
model.load_state_dict(state_dict) | |
epoch = checkpoint['epoch'] | |
if args['start_epoch'] is None: | |
args['start_epoch'] = epoch + 1 | |
model = model.to(device) | |
loader_x, loader_y = None, None | |
for x, y in test_loader: | |
print(x) | |
print(y) | |
loader_x, loader_y = x.to(device), y.to(device) | |
break | |
z, _ = model(loader_x) | |
pred = torch.argmax(z, 1) | |
prediction_label = CATEGORY_NAMES[pred.item()] | |
return f'Predicted label: {prediction_label}' | |
# Example image query (optional but recommended for demonstration) | |
example_image = "./examples/image_0.jpg" # Ensure this image is available in the repo | |
example_image_2 = "./examples/image_7.jpg" | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(), | |
outputs=gr.Text(), | |
examples=[example_image, example_image_2] # Include an example input for users -- you will want to find a relevant image to include and push it to your HuggingFace Space | |
) | |
if __name__ == "__main__": | |
interface.launch() |