File size: 9,135 Bytes
2f23f07
52b383d
 
 
 
 
 
 
 
c2966ec
52b383d
d5f2bf5
52b383d
 
 
d63c6cd
d2bf1cc
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2bf5
 
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f2bf5
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
b5c625b
 
 
 
 
 
 
 
94b65fc
b5c625b
 
94b65fc
b5c625b
 
2ba277c
 
 
 
 
03888cd
2ba277c
 
0e9f0b7
1e99cb9
af62f38
1e99cb9
5a70ae3
1e99cb9
 
5a70ae3
 
 
 
 
ef99204
 
5a70ae3
 
 
ef99204
 
5a70ae3
 
 
 
2f23f07
5a70ae3
 
2f23f07
b5c625b
2f23f07
af62f38
e5456b5
af62f38
 
e5456b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c240920
 
 
e5456b5
 
af62f38
 
7633d89
af62f38
7a902b1
d5f2bf5
e174116
2bc17ff
136c53f
c082871
5a70ae3
6ee80eb
95ec167
2c43fbf
2ba90cf
5a70ae3
6ee80eb
e5456b5
 
60e9bf1
c082871
136c53f
7a902b1
136c53f
5490d43
ab34b0c
7654258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr

import argparse
import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function


class RelationModuleMultiScale(torch.nn.Module):

    def __init__(self, img_feature_dim, num_bottleneck, num_frames):
        super(RelationModuleMultiScale, self).__init__()
        self.subsample_num = 3
        self.img_feature_dim = img_feature_dim
        self.scales = [i for i in range(num_frames, 1, -1)]
        self.relations_scales = []
        self.subsample_scales = []
        for scale in self.scales:
            relations_scale = self.return_relationset(num_frames, scale)
            self.relations_scales.append(relations_scale)
            self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
        self.num_frames = num_frames
        self.fc_fusion_scales = nn.ModuleList() # high-tech modulelist
        for i in range(len(self.scales)):
            scale = self.scales[i]
            fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
            self.fc_fusion_scales += [fc_fusion]

    def forward(self, input):
        act_scale_1 = input[:, self.relations_scales[0][0] , :]
        act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
        act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
        act_scale_1 = act_scale_1.unsqueeze(1)
        act_all = act_scale_1.clone()
        for scaleID in range(1, len(self.scales)):
            act_relation_all = torch.zeros_like(act_scale_1)
            num_total_relations = len(self.relations_scales[scaleID])
            num_select_relations = self.subsample_scales[scaleID]
            idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
            for idx in idx_relations_evensample:
                act_relation = input[:, self.relations_scales[scaleID][idx], :]
                act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
                act_relation = self.fc_fusion_scales[scaleID](act_relation)
                act_relation = act_relation.unsqueeze(1)
                act_relation_all += act_relation
            act_all = torch.cat((act_all, act_relation_all), 1)
        return act_all

    def return_relationset(self, num_frames, num_frames_relation):
        import itertools
        return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))


parser = argparse.ArgumentParser()
parser.add_argument('--dataset',  default='Sprite', help='datasets')
parser.add_argument('--data_root', default='dataset', help='root directory for data')
parser.add_argument('--num_class',  type=int, default=15, help='the number of class for jester dataset')
parser.add_argument('--input_type',  default='image', choices=['feature', 'image'], help='the type of input')
parser.add_argument('--src',  default='domain_1', help='source domain')
parser.add_argument('--tar',  default='domain_2', help='target domain')
parser.add_argument('--num_segments', type=int, default=8, help='the number of frame segment')
parser.add_argument('--backbone', type=str, default="dcgan", choices=['dcgan', 'resnet101', 'I3Dpretrain','I3Dfinetune'], help='backbone')
parser.add_argument('--channels', default=3, type=int, help='input channels for image inputs')
parser.add_argument('--add_fc', default=1, type=int, metavar='M', help='number of additional fc layers (excluding the last fc layer) (e.g. 0, 1, 2)')
parser.add_argument('--fc_dim', type=int, default=1024, help='dimension of added fc')
parser.add_argument('--frame_aggregation', type=str, default='trn', choices=[ 'rnn', 'trn'], help='aggregation of frame features (none if baseline_type is not video)')
parser.add_argument('--dropout_rate', default=0.5, type=float, help='dropout ratio for frame-level feature (default: 0.5)')
parser.add_argument('--f_dim', type=int, default=512, help='dim of f')
parser.add_argument('--z_dim', type=int, default=512, help='dimensionality of z_t')
parser.add_argument('--f_rnn_layers', type=int, default=1, help='number of layers (content lstm)')
parser.add_argument('--use_bn', type=str, default='none', choices=['none', 'AdaBN', 'AutoDIAL'], help='normalization-based methods')
parser.add_argument('--prior_sample', type=str, default='random', choices=['random', 'post'], help='how to sample prior')
parser.add_argument('--batch_size', default=128, type=int, help='-batch size')
parser.add_argument('--use_attn', type=str, default='TransAttn', choices=['none', 'TransAttn', 'general'], help='attention-mechanism')
parser.add_argument('--data_threads', type=int, default=5, help='number of data loading threads')
opt = parser.parse_args(args=[])


def display_gif(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        images.append(imageio.imread(image_filename))

    gif_filename = 'avatar_source.gif'
    return imageio.mimsave(gif_filename, images)


def display_gif_pad(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        image = image[:, :, :3]
        image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
        images.append(image_pad)

    return imageio.mimsave(save_name, images)
    

def display_image(file_name):

    image_filename = file_name + '0' + '.png'
    print(image_filename)
    image = imageio.imread(image_filename)
    imageio.imwrite('image.png', image)
    

def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):

    # == Source Avatar ==
    # body
    body_source = '0'
    
    # hair
    if hair_source == "green": hair_source = '0'
    elif hair_source == "yellow": hair_source = '2'
    elif hair_source == "rose": hair_source = '4'
    elif hair_source == "red": hair_source = '7'
    elif hair_source == "wine": hair_source = '8'
    
    # top
    if top_source == "brown": top_source = '0'
    elif top_source == "blue": top_source = '1'
    elif top_source == "white": top_source = '2'
    
    # bottom
    if bottom_source == "white": bottom_source = '0'
    elif bottom_source == "golden": bottom_source = '1'
    elif bottom_source == "red": bottom_source = '2'
    elif bottom_source == "silver": bottom_source = '3'
    
    file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
    file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
    
    gif = display_gif_pad(file_name_source, 'avatar_source.gif')
    
    # == Target Avatar ==
    # body
    body_target = '1'
    
    # hair
    if hair_target == "violet": hair_target = '1'
    elif hair_target == "silver": hair_target = '3'
    elif hair_target == "purple": hair_target = '5'
    elif hair_target == "grey": hair_target = '6'
    elif hair_target == "golden": hair_target = '9'
    
    # top
    if top_target == "grey": top_target = '3'
    elif top_target == "khaki": top_target = '4'
    elif top_target == "linen": top_target = '5'
    elif top_target == "ocre": top_target = '6'
    
    # bottom
    if bottom_target == "denim": bottom_target = '4'
    elif bottom_target == "olive": bottom_target = '5'
    elif bottom_target == "brown": bottom_target = '6'
    
    file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
    file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
    
    gif_target = display_gif_pad(file_name_target, 'avatar_target.gif')
    
    return 'demo.gif'


gr.Interface(
    run,
    inputs=[
        gr.Textbox(value="Source Avatar - Human", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
        gr.Textbox(value="Target Avatar - Alien", interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
        gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
        gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
        gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
    ],
    outputs=[
        gr.components.Image(type="file", label="Domain Disentanglement"),
    ],
    live=True,
    title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()