from src.datasets.base_dataset import SimpleAudioFakeDataset import pandas as pd from pathlib import Path class MLAADv3(SimpleAudioFakeDataset): languages=['fr', 'et', 'ar', 'hu', 'bg', 'es', 'el', 'da', 'ga', 'ru', 'fi', 'uk', 'pl', 'en', 'sw', 'mt', 'sk', 'ro', 'hi', 'cs', 'nl', 'it', 'de'] def __init__(self, root_path, subset=None, **kwargs): super().__init__(root_path, subset, **kwargs) self.root_path = Path(f'{root_path}') self.subset = subset self.samples = self.load_samples() def load_samples(self): samples = { "user_id": [], "language" : [], "sample_name": [], "attack_type": [], "label": [], "path": [] } for lang in self.languages: r_path = self.root_path / f"fake/{lang}" folders = list(r_path.glob("*")) for folder in folders: path = r_path / folder.name if not path.exists(): print(f"{path} 경로를 찾을 수 없습니다.") continue samples_list = list(path.rglob("*.wav")) if self.subset == 'train': samples_list = samples_list[:int(len(samples_list)*0.7)] else: samples_list = samples_list[int(len(samples_list)*0.7):] for sample in samples_list: samples["user_id"].append(None) samples["language"].append(lang) samples["path"].append(sample) samples["sample_name"].append(sample.stem) samples["attack_type"].append("-") samples["label"].append("spoof") print(f"__MLAADv3_{self.subset}:{len(samples['label'])}") return pd.DataFrame(samples)