streamlit_demo / src /datasets /base_dataset.py
ldhldh's picture
Upload 28 files
2c0f55c verified
"""Base dataset classes."""
import logging
import math
import random
import numpy as np
import pandas as pd
import torch
import torchaudio
from torch.utils.data import Dataset
from torch.utils.data.dataset import T_co
LOGGER = logging.getLogger(__name__)
SAMPLING_RATE = 16_000
APPLY_NORMALIZATION = True
APPLY_TRIMMING = True
APPLY_PADDING = True
FRAMES_NUMBER = 480_000 # <- originally 64_600
SOX_SILENCE = [
# trim all silence that is longer than 0.2s and louder than 1% volume (relative to the file)
# from beginning and middle/end
["silence", "1", "0.2", "1%", "-1", "0.2", "1%"],
]
class SimpleAudioFakeDataset(Dataset):
def __init__(
self,
subset,
transform=None,
return_label: bool = True,
return_meta: bool = False,
):
self.transform = transform
self.samples = pd.DataFrame()
self.subset = subset
self.allowed_attacks = None
self.partition_ratio = None
self.seed = None
self.return_label = return_label
self.return_meta = return_meta
def split_samples(self, samples_list):
if isinstance(samples_list, pd.DataFrame):
samples_list = samples_list.sort_values(by=list(samples_list.columns))
samples_list = samples_list.sample(frac=1, random_state=self.seed)
else:
samples_list = sorted(samples_list)
random.seed(self.seed)
random.shuffle(samples_list)
p, s = self.partition_ratio
subsets = np.split(
samples_list, [int(p * len(samples_list)), int((p + s) * len(samples_list))]
)
return dict(zip(["train", "test", "val"], subsets))[self.subset]
def df2tuples(self):
tuple_samples = []
for i, elem in self.samples.iterrows():
tuple_samples.append(
(str(elem["path"]), elem["label"], elem["attack_type"])
)
self.samples = tuple_samples
return self.samples
def __getitem__(self, index) -> T_co:
if isinstance(self.samples, pd.DataFrame):
sample = self.samples.iloc[index]
path = str(sample["path"])
label = sample["label"]
attack_type = sample["attack_type"]
if type(attack_type) != str and math.isnan(attack_type):
attack_type = "N/A"
else:
path, label, attack_type = self.samples[index]
waveform, sample_rate = torchaudio.load(path, normalize=APPLY_NORMALIZATION)
real_sec_length = len(waveform[0]) / sample_rate
waveform, sample_rate = apply_preprocessing(waveform, sample_rate)
return_data = [waveform, sample_rate]
if self.return_label:
label = 1 if label == "bonafide" else 0
return_data.append(label)
if self.return_meta:
return_data.append(
(
attack_type,
path,
self.subset,
real_sec_length,
)
)
return return_data
def __len__(self):
return len(self.samples)
def apply_preprocessing(
waveform,
sample_rate,
):
if sample_rate != SAMPLING_RATE and SAMPLING_RATE != -1:
waveform, sample_rate = resample_wave(waveform, sample_rate, SAMPLING_RATE)
# Stereo to mono
if waveform.dim() > 1 and waveform.shape[0] > 1:
waveform = waveform[:1, ...]
# Trim too long utterances...
if APPLY_TRIMMING:
waveform, sample_rate = apply_trim(waveform, sample_rate)
# ... or pad too short ones.
if APPLY_PADDING:
waveform = apply_pad(waveform, FRAMES_NUMBER)
return waveform, sample_rate
def resample_wave(waveform, sample_rate, target_sample_rate):
waveform, sample_rate = torchaudio.sox_effects.apply_effects_tensor(
waveform, sample_rate, [["rate", f"{target_sample_rate}"]]
)
return waveform, sample_rate
def resample_file(path, target_sample_rate, normalize=True):
waveform, sample_rate = torchaudio.sox_effects.apply_effects_file(
path, [["rate", f"{target_sample_rate}"]], normalize=normalize
)
return waveform, sample_rate
def apply_trim(waveform, sample_rate):
(
waveform_trimmed,
sample_rate_trimmed,
) = torchaudio.sox_effects.apply_effects_tensor(waveform, sample_rate, SOX_SILENCE)
if waveform_trimmed.size()[1] > 0:
waveform = waveform_trimmed
sample_rate = sample_rate_trimmed
return waveform, sample_rate
def apply_pad(waveform, cut):
"""Pad wave by repeating signal until `cut` length is achieved."""
waveform = waveform.squeeze(0)
waveform_len = waveform.shape[0]
if waveform_len >= cut:
return waveform[:cut]
# need to pad
num_repeats = int(cut / waveform_len) + 1
padded_waveform = torch.tile(waveform, (1, num_repeats))[:, :cut][0]
return padded_waveform