streamlit_demo / src /datasets /MLAADv3_dataset.py
ldhldh's picture
Upload 28 files
2c0f55c verified
from src.datasets.base_dataset import SimpleAudioFakeDataset
import pandas as pd
from pathlib import Path
class MLAADv3(SimpleAudioFakeDataset):
languages=['fr', 'et', 'ar', 'hu', 'bg', 'es', 'el', 'da', 'ga', 'ru', 'fi',
'uk', 'pl', 'en', 'sw', 'mt', 'sk', 'ro', 'hi', 'cs', 'nl', 'it', 'de']
def __init__(self, root_path, subset=None, **kwargs):
super().__init__(root_path, subset, **kwargs)
self.root_path = Path(f'{root_path}')
self.subset = subset
self.samples = self.load_samples()
def load_samples(self):
samples = {
"user_id": [],
"language" : [],
"sample_name": [],
"attack_type": [],
"label": [],
"path": []
}
for lang in self.languages:
r_path = self.root_path / f"fake/{lang}"
folders = list(r_path.glob("*"))
for folder in folders:
path = r_path / folder.name
if not path.exists():
print(f"{path} 경로를 찾을 수 없습니다.")
continue
samples_list = list(path.rglob("*.wav"))
if self.subset == 'train':
samples_list = samples_list[:int(len(samples_list)*0.7)]
else:
samples_list = samples_list[int(len(samples_list)*0.7):]
for sample in samples_list:
samples["user_id"].append(None)
samples["language"].append(lang)
samples["path"].append(sample)
samples["sample_name"].append(sample.stem)
samples["attack_type"].append("-")
samples["label"].append("spoof")
print(f"__MLAADv3_{self.subset}:{len(samples['label'])}")
return pd.DataFrame(samples)