Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import numpy as np | |
import pandas as pd | |
import requests | |
from huggingface_hub.hf_api import SpaceInfo | |
url = 'https://docs.google.com/spreadsheets/d/1RoM2DgzaYJg6Ias1YNC2kQN01xSWJb1KEER9efb0X7A/edit#gid=0' | |
csv_url = url.replace('/edit#gid=', '/export?format=csv&gid=') | |
class DatasetList: | |
def __init__(self): | |
self.table = pd.read_csv(csv_url) | |
self._preprocess_table() | |
self.table_header = ''' | |
<tr> | |
<td width="15%">Dataset Name</td> | |
<td width="10%">Question Type</td> | |
<td width="10%">Count</td> | |
<td width="5%">Paper</td> | |
<td width="5%">Lincense</td> | |
<td width="5%">Access link on 🤗</td> | |
<td width="30%">Brief Description</td> | |
<td width="10%">Use Cases</td> | |
</tr>''' | |
def _preprocess_table(self) -> None: | |
self.table['dataset_name_lowercase'] = self.table.dataset_name.str.lower() | |
self.table['count'] = self.table['count'].apply(str) | |
rows = [] | |
for row in self.table.itertuples(): | |
dataset_name = f'{row.dataset_name}' if isinstance(row.dataset_name, str) else '' | |
question_type = f'{row.question_type}' if isinstance(row.question_type, str) else '' | |
count = f'{row.count}' if isinstance(row.count, str) else '' | |
reference_paper = f'<a href="{row.reference_paper}" target="_blank">Link</a>' if isinstance(row.reference_paper, str) else '' | |
lincense = f'<a href="{row.lincense}" target="_blank">Link</a>' if isinstance(row.lincense, str) else '' | |
huggingface_link = f'<a href="{row.huggingface_link}" target="_blank">HF Link</a>' if isinstance(row.huggingface_link, str) else '' | |
brief_description = f'{row.brief_description}' if isinstance(row.brief_description, str) else '' | |
use_case = f'{row.use_case}' if isinstance(row.use_case, str) else '' | |
row = f''' | |
<tr> | |
<td>{dataset_name}</td> | |
<td>{question_type}</td> | |
<td>{count}</td> | |
<td>{reference_paper}</td> | |
<td>{lincense}</td> | |
<td>{huggingface_link}</td> | |
<td>{brief_description}</td> | |
<td>{use_case}</td> | |
</tr>''' | |
rows.append(row) | |
self.table['html_table_content'] = rows | |
def render(self, search_query: str, | |
case_sensitive: bool, | |
filter_names: list[str] | |
) -> tuple[int, str]: | |
df = self.table | |
if search_query: | |
if case_sensitive: | |
df = df[df.dataset_name.str.contains(search_query)] | |
else: | |
df = df[df.dataset_name_lowercase.str.contains(search_query.lower())] | |
has_datalink = 'Data Link' in filter_names | |
has_paper = 'Paper' in filter_names | |
df = self.filter_table(df, has_datalink, has_paper) | |
return len(df), self.to_html(df, self.table_header) | |
def filter_table(df: pd.DataFrame, | |
has_datalink: bool, | |
has_paper: bool | |
) -> pd.DataFrame: | |
if has_datalink: | |
df = df[~df.huggingface_link.isna()] | |
if has_paper: | |
df = df[~df.reference_paper.isna()] | |
return df | |
def to_html(df: pd.DataFrame, table_header: str) -> str: | |
table_data = ''.join(df.html_table_content) | |
html = f''' | |
<table> | |
{table_header} | |
{table_data} | |
</table>''' | |
return html | |