laverdes commited on
Commit
b76efe0
·
1 Parent(s): fae2aeb

chore: clean up application with commented optionals

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -35,6 +35,7 @@ from langchain.chains import LLMChain
35
  from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
36
  from langchain_core.prompts import PromptTemplate
37
  from langchain_openai import OpenAI
 
38
 
39
  from io import BytesIO
40
  from time import sleep
@@ -207,7 +208,7 @@ text_to_speech_pipe.model.enable_cpu_offload()
207
  text_to_speech_pipe.model.use_flash_attention_2=True
208
  text_to_speech_pipe.model.pad_token_id=0 # 50257
209
 
210
- from transformers import AutoTokenizer
211
 
212
  tokenizer = AutoTokenizer.from_pretrained("suno/bark-small")
213
  #print("suno/bark-small tokenizer pad_token_id: ", tokenizer.pad_token_id) # 0
@@ -296,16 +297,16 @@ image_generation_tool_fast = Tool.from_space(
296
  )
297
 
298
 
299
- # ceo_model = load_model("LiteLLMModel", "gpt-4o") # or anthropic/claude-3-sonnet
300
-
301
 
 
302
  ceo_model = HfApiModel(
303
  max_tokens=2096, # 8096 for manager
304
  temperature=0.5,
305
  model_id= 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', # "meta-llama/Llama-3.3-70B-Instruct", # 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', # same as Qwen/Qwen2.5-Coder-32B-Instruct
306
  custom_role_conversions=None,
307
  )
308
-
309
  with open("prompts.yaml", 'r') as stream:
310
  prompt_templates = yaml.safe_load(stream)
311
 
@@ -362,5 +363,4 @@ agent.visualize()
362
  # prompt = ("navigate to a random wikipedia page and give me a summary of the content, then make a single image representing all the content")
363
  # agent.run(prompt)
364
 
365
- GradioUI(agent).launch()
366
- #GradioUIImage(agent).launch()
 
35
  from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
36
  from langchain_core.prompts import PromptTemplate
37
  from langchain_openai import OpenAI
38
+ from transformers import AutoTokenizer
39
 
40
  from io import BytesIO
41
  from time import sleep
 
208
  text_to_speech_pipe.model.use_flash_attention_2=True
209
  text_to_speech_pipe.model.pad_token_id=0 # 50257
210
 
211
+
212
 
213
  tokenizer = AutoTokenizer.from_pretrained("suno/bark-small")
214
  #print("suno/bark-small tokenizer pad_token_id: ", tokenizer.pad_token_id) # 0
 
297
  )
298
 
299
 
300
+ ceo_model = load_model("LiteLLMModel", "gpt-4o") # or anthropic/claude-3-sonnet
 
301
 
302
+ """
303
  ceo_model = HfApiModel(
304
  max_tokens=2096, # 8096 for manager
305
  temperature=0.5,
306
  model_id= 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', # "meta-llama/Llama-3.3-70B-Instruct", # 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud', # same as Qwen/Qwen2.5-Coder-32B-Instruct
307
  custom_role_conversions=None,
308
  )
309
+ """
310
  with open("prompts.yaml", 'r') as stream:
311
  prompt_templates = yaml.safe_load(stream)
312
 
 
363
  # prompt = ("navigate to a random wikipedia page and give me a summary of the content, then make a single image representing all the content")
364
  # agent.run(prompt)
365
 
366
+ GradioUI(agent).launch()