Upload 7 files
Browse files- agentic/__init__.py +1 -0
- agentic/graph.png +0 -0
- agentic/langgraph_agent.py +99 -0
- agentic/tools.py +109 -0
- app.py +47 -7
- config.yaml +22 -0
- requirements.txt +19 -1
agentic/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .langgraph_agent import LangGraphAgent4GAIA
|
agentic/graph.png
ADDED
|
agentic/langgraph_agent.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
| 4 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
| 5 |
+
from langchain_openai import ChatOpenAI
|
| 6 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 7 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 8 |
+
from omegaconf import OmegaConf
|
| 9 |
+
from .tools import *
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_config(config_path: str):
|
| 13 |
+
config = OmegaConf.load(config_path)
|
| 14 |
+
return config
|
| 15 |
+
|
| 16 |
+
# --- Constants ---
|
| 17 |
+
CONFIG = load_config("config.yaml")
|
| 18 |
+
SYSTEM_PROMPT = CONFIG["system_prompt"]["custom"]
|
| 19 |
+
|
| 20 |
+
# Load environment variables from .env file
|
| 21 |
+
load_dotenv()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class LangGraphAgent4GAIA:
|
| 25 |
+
def __init__(self, model_provider: str, model_name: str):
|
| 26 |
+
self.sys_prompt = SystemMessage(content=SYSTEM_PROMPT)
|
| 27 |
+
self.graph = self.get_agent(model_provider, model_name)
|
| 28 |
+
|
| 29 |
+
def assistant(self, state: MessagesState):
|
| 30 |
+
"""Assistant node"""
|
| 31 |
+
return {"messages": [self.llm_with_tools.invoke([self.sys_prompt] + state["messages"])]}
|
| 32 |
+
|
| 33 |
+
def get_agent(self, provider: str, model_name: str):
|
| 34 |
+
tools = [
|
| 35 |
+
multiply,
|
| 36 |
+
add,
|
| 37 |
+
subtract,
|
| 38 |
+
divide,
|
| 39 |
+
modulo,
|
| 40 |
+
web_search,
|
| 41 |
+
arxiv_search,
|
| 42 |
+
wiki_search
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# 1. Build graph
|
| 46 |
+
if provider == "openai":
|
| 47 |
+
llm = ChatOpenAI(
|
| 48 |
+
model=model_name,
|
| 49 |
+
temperature=0,
|
| 50 |
+
max_retries=2,
|
| 51 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 52 |
+
)
|
| 53 |
+
elif provider == "huggingface":
|
| 54 |
+
llm = ChatHuggingFace(
|
| 55 |
+
llm=HuggingFaceEndpoint(
|
| 56 |
+
repo_id=model_name,
|
| 57 |
+
task="text-generation",
|
| 58 |
+
max_new_tokens=1024,
|
| 59 |
+
do_sample=False,
|
| 60 |
+
repetition_penalty=1.03,
|
| 61 |
+
temperature=0
|
| 62 |
+
),
|
| 63 |
+
verbose=True
|
| 64 |
+
)
|
| 65 |
+
else:
|
| 66 |
+
raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.")
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# 2. Bind tools to LLM
|
| 70 |
+
self.llm_with_tools = llm.bind_tools(tools)
|
| 71 |
+
|
| 72 |
+
builder = StateGraph(MessagesState)
|
| 73 |
+
builder.add_node("assistant", self.assistant)
|
| 74 |
+
builder.add_node("tools", ToolNode(tools))
|
| 75 |
+
builder.add_edge(START, "assistant")
|
| 76 |
+
builder.add_conditional_edges(
|
| 77 |
+
"assistant",
|
| 78 |
+
tools_condition,
|
| 79 |
+
)
|
| 80 |
+
builder.add_edge("tools", "assistant")
|
| 81 |
+
|
| 82 |
+
# Compile graph
|
| 83 |
+
return builder.compile()
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
from langchain_core.runnables.graph import MermaidDrawMethod
|
| 87 |
+
|
| 88 |
+
question = "What is the capital of Spain?"
|
| 89 |
+
# Build the graph
|
| 90 |
+
agent_manager = LangGraphAgent4GAIA(CONFIG["model"]["provider"], CONFIG["model"]["name"])
|
| 91 |
+
img_data = agent_manager.graph.get_graph().draw_mermaid_png(draw_method=MermaidDrawMethod.API)
|
| 92 |
+
with open('agentic/graph.png', "wb") as f:
|
| 93 |
+
f.write(img_data)
|
| 94 |
+
|
| 95 |
+
# Run the graph
|
| 96 |
+
messages = [HumanMessage(content=question)]
|
| 97 |
+
messages = agent_manager.graph.invoke({"messages": messages}, {"recursion_limit": 50})
|
| 98 |
+
for m in messages["messages"]:
|
| 99 |
+
m.pretty_print()
|
agentic/tools.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.tools import tool
|
| 2 |
+
from langchain_community.tools import DuckDuckGoSearchResults
|
| 3 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 4 |
+
from langchain_community.document_loaders import ArxivLoader, WikipediaLoader
|
| 5 |
+
|
| 6 |
+
@tool
|
| 7 |
+
def add(a: int, b: int) -> int:
|
| 8 |
+
"""Add two numbers.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
a: first int
|
| 12 |
+
b: second int
|
| 13 |
+
"""
|
| 14 |
+
return a + b
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@tool
|
| 18 |
+
def subtract(a: int, b: int) -> int:
|
| 19 |
+
"""Subtract two numbers.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
a: first int
|
| 23 |
+
b: second int
|
| 24 |
+
"""
|
| 25 |
+
return a - b
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@tool
|
| 29 |
+
def multiply(a: int, b: int) -> int:
|
| 30 |
+
"""Multiply two numbers.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
a: first int
|
| 34 |
+
b: second int
|
| 35 |
+
"""
|
| 36 |
+
return a * b
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@tool
|
| 40 |
+
def divide(a: int, b: int) -> int:
|
| 41 |
+
"""Divide two numbers.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
a: first int
|
| 45 |
+
b: second int
|
| 46 |
+
"""
|
| 47 |
+
if b == 0:
|
| 48 |
+
raise ValueError("Cannot divide by zero.")
|
| 49 |
+
return a / b
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@tool
|
| 53 |
+
def modulo(a: int, b: int) -> int:
|
| 54 |
+
"""Get the modulus of two numbers.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
a: first int
|
| 58 |
+
b: second int
|
| 59 |
+
"""
|
| 60 |
+
return a % b
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@tool
|
| 64 |
+
def web_search(query: str) -> str:
|
| 65 |
+
"""Web search with Tavily for a query and return maximum 3 results.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
query: The search query."""
|
| 69 |
+
# search_docs = DuckDuckGoSearchResults(max_results=3).invoke(query=query)
|
| 70 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 71 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 72 |
+
[
|
| 73 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 74 |
+
for doc in search_docs
|
| 75 |
+
])
|
| 76 |
+
# return {"web_results": formatted_search_docs}
|
| 77 |
+
return formatted_search_docs
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@tool
|
| 81 |
+
def arxiv_search(query: str) -> str:
|
| 82 |
+
"""Search ArXiv for a query and return maximum 3 result.
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
query: The search query."""
|
| 86 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 87 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 88 |
+
[
|
| 89 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
| 90 |
+
for doc in search_docs
|
| 91 |
+
])
|
| 92 |
+
# return {"arxiv_results": formatted_search_docs}
|
| 93 |
+
return formatted_search_docs
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@tool
|
| 97 |
+
def wiki_search(query: str) -> str:
|
| 98 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
query: The search query."""
|
| 102 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 103 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
| 104 |
+
[
|
| 105 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
| 106 |
+
for doc in search_docs
|
| 107 |
+
])
|
| 108 |
+
# return {"wiki_results": formatted_search_docs}
|
| 109 |
+
return formatted_search_docs
|
app.py
CHANGED
|
@@ -1,15 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
-
|
| 10 |
|
| 11 |
# --- Basic Agent Definition ---
|
| 12 |
-
# ----- THIS IS
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
print("BasicAgent initialized.")
|
|
@@ -19,6 +42,23 @@ class BasicAgent:
|
|
| 19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
return fixed_answer
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
"""
|
| 24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
@@ -34,17 +74,17 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 34 |
print("User not logged in.")
|
| 35 |
return "Please Login to Hugging Face with the button.", None
|
| 36 |
|
| 37 |
-
api_url =
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
| 40 |
|
| 41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent =
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
| 47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase (
|
| 48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
print(agent_code)
|
| 50 |
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This is a modified version of the original hf space code for submitting
|
| 3 |
+
answers from the course.
|
| 4 |
+
|
| 5 |
+
Instruction on submitting answers from
|
| 6 |
+
https://huggingface.co/learn/agents-course/unit4/hands-on
|
| 7 |
+
|
| 8 |
+
GET /questions: Retrieve the full list of filtered evaluation questions.
|
| 9 |
+
GET /random-question: Fetch a single random question from the list.
|
| 10 |
+
GET /files/{task_id}: Download a specific file associated with a given task ID.
|
| 11 |
+
POST /submit: Submit agent answers, calculate the score, and update the leaderboard.
|
| 12 |
+
|
| 13 |
+
The submit function will compare the answer to the ground truth in an EXACT MATCH manner,
|
| 14 |
+
hence prompt it well ! The GAIA team shared a prompting example for your agent here
|
| 15 |
+
(for the sake of this course, make sure you don't include the text "FINAL ANSWER" in your
|
| 16 |
+
submission, just make your agent reply with the answer and nothing else).
|
| 17 |
+
"""
|
| 18 |
import os
|
| 19 |
import gradio as gr
|
| 20 |
import requests
|
|
|
|
| 21 |
import pandas as pd
|
| 22 |
+
from omegaconf import OmegaConf
|
| 23 |
+
from langchain_core.messages import HumanMessage
|
| 24 |
+
from agentic import LangGraphAgent4GAIA
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def load_config(config_path: str):
|
| 28 |
+
config = OmegaConf.load(config_path)
|
| 29 |
+
return config
|
| 30 |
|
|
|
|
| 31 |
# --- Constants ---
|
| 32 |
+
CONFIG = load_config("config.yaml")
|
| 33 |
|
| 34 |
# --- Basic Agent Definition ---
|
| 35 |
+
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
| 36 |
class BasicAgent:
|
| 37 |
def __init__(self):
|
| 38 |
print("BasicAgent initialized.")
|
|
|
|
| 42 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 43 |
return fixed_answer
|
| 44 |
|
| 45 |
+
class Agent:
|
| 46 |
+
def __init__(self):
|
| 47 |
+
self.agent_manager = LangGraphAgent4GAIA(
|
| 48 |
+
model_provider=CONFIG["model"]["provider"],
|
| 49 |
+
model_name=CONFIG["model"]["name"]
|
| 50 |
+
)
|
| 51 |
+
print("LangGraphAgent4GAIA initialized.")
|
| 52 |
+
|
| 53 |
+
def __call__(self, question: str) -> str:
|
| 54 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 55 |
+
messages = [HumanMessage(content=question)]
|
| 56 |
+
result = self.agent_manager.graph.invoke({"messages": messages}, {"recursion_limit": 50})
|
| 57 |
+
answer = result['messages'][-1].content
|
| 58 |
+
final_answer = answer.split('FINAL ANSWER: ')[-1].strip()
|
| 59 |
+
return final_answer
|
| 60 |
+
|
| 61 |
+
|
| 62 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 63 |
"""
|
| 64 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
|
|
|
| 74 |
print("User not logged in.")
|
| 75 |
return "Please Login to Hugging Face with the button.", None
|
| 76 |
|
| 77 |
+
api_url = CONFIG["api_url"]
|
| 78 |
questions_url = f"{api_url}/questions"
|
| 79 |
submit_url = f"{api_url}/submit"
|
| 80 |
|
| 81 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 82 |
try:
|
| 83 |
+
agent = Agent()
|
| 84 |
except Exception as e:
|
| 85 |
print(f"Error instantiating agent: {e}")
|
| 86 |
return f"Error initializing agent: {e}", None
|
| 87 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase (useful for others so please keep it public)
|
| 88 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 89 |
print(agent_code)
|
| 90 |
|
config.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
api_url: "https://agents-course-unit4-scoring.hf.space"
|
| 2 |
+
|
| 3 |
+
system_prompt:
|
| 4 |
+
default: "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n"
|
| 5 |
+
custom: "You are a helpful assistant tasked with answering questions using a set of tools.\nNow, I will ask you a question. Report your thoughts, and finish your answer with the following template: \nFINAL ANSWER: [YOUR FINAL ANSWER]. \nYOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\nYour answer should only start with 'FINAL ANSWER: ', then follows with the answer. "
|
| 6 |
+
|
| 7 |
+
model:
|
| 8 |
+
provider: "openai"
|
| 9 |
+
name: "gpt-4o-mini"
|
| 10 |
+
# provider: "huggingface"
|
| 11 |
+
# name: "Qwen/Qwen2.5-Coder-32B-Instruct"
|
| 12 |
+
# name: "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
code:
|
| 16 |
+
username: "lautel"
|
| 17 |
+
hf_space: "https://huggingface.co/spaces/lautel/agents-course-final-project"
|
| 18 |
+
|
| 19 |
+
paths:
|
| 20 |
+
output: "results"
|
| 21 |
+
output_filename: "results_{timestamp}.json"
|
| 22 |
+
logs_filename: "log_{timestamp}.txt"
|
requirements.txt
CHANGED
|
@@ -1,2 +1,20 @@
|
|
| 1 |
gradio
|
| 2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
+
requests
|
| 3 |
+
omegaconf
|
| 4 |
+
pandas
|
| 5 |
+
tabulate
|
| 6 |
+
langchain
|
| 7 |
+
langchain-community
|
| 8 |
+
langchain-core
|
| 9 |
+
langchain-huggingface
|
| 10 |
+
langchain-openai
|
| 11 |
+
langchain-tavily
|
| 12 |
+
langgraph
|
| 13 |
+
huggingface_hub
|
| 14 |
+
qdrant-client
|
| 15 |
+
arxiv
|
| 16 |
+
pymupdf
|
| 17 |
+
wikipedia
|
| 18 |
+
pgvector
|
| 19 |
+
python-dotenv
|
| 20 |
+
beautifulsoup4
|