File size: 11,446 Bytes
b78a401
 
 
0ae8f9d
 
b78a401
 
 
 
1bda89d
b78a401
 
88dddb9
 
 
 
b78a401
30e8577
281eebf
b78a401
 
 
 
 
 
 
 
0f0b38d
e298385
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35382f2
3270a8d
 
 
 
 
b78a401
d73147f
 
51ca0e2
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
4e4fc61
a3ddd6b
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ae8f9d
298f2d4
51cb0a1
0ae8f9d
 
 
 
 
 
 
 
 
 
 
 
d697d0c
51f5032
0ae8f9d
 
 
 
 
 
 
 
 
88dddb9
61e2b0b
 
 
3270a8d
 
 
 
0f0b38d
6e31cea
 
0f0b38d
f885102
3270a8d
 
 
 
 
 
88dddb9
 
3270a8d
 
e31c2a8
b78a401
 
 
45ea86a
b78a401
 
d73147f
 
 
 
 
 
 
 
 
b78a401
30946c3
 
 
 
 
 
 
eb712f6
4e4fc61
b78a401
 
 
d73147f
 
b02e35d
63d4bdd
b78a401
 
6f97145
 
 
 
 
 
1f646d8
35382f2
19d12aa
35382f2
0eb74e9
19d12aa
35382f2
19d12aa
 
 
1f646d8
19d12aa
 
 
d33883f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b78a401
d73147f
b78a401
 
 
 
45ea86a
b78a401
 
45ea86a
 
 
 
 
 
d73147f
 
45ea86a
d73147f
 
 
b78a401
 
d73147f
 
 
 
 
 
 
 
6355ff9
 
36a6473
 
 
 
d73147f
 
 
 
 
 
 
 
 
 
 
6355ff9
 
36a6473
 
 
 
d73147f
 
 
 
b78a401
 
 
45ea86a
d73147f
 
 
 
 
 
 
b78a401
 
 
45ea86a
 
d73147f
 
 
 
45ea86a
 
b78a401
 
 
45ea86a
b78a401
 
 
 
 
 
 
 
d73147f
b78a401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO

# Set up page config
st.set_page_config(
    page_title="FactBench Leaderboard",
    layout="wide"
)

# load header
with open("_header.md", "r") as f:
    HEADER_MD = f.read()

# Load the image
image = Image.open("factEvalSteps.png")
logo_image = Image.open("Factbench_logo.png")

# Custom CSS for the page
st.markdown(
    """
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Courier+Prime:wght@400&display=swap');

    html, body, [class*="css"] {
        font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
        background-color: #f9f9f9;  /* Light grey background */
    }

    .title {
        font-size: 42px;
        font-weight: bold;
        text-align: center;
        color: #333;
        margin-bottom: 5px;
    }

    .description {
        font-size: 22px;
        text-align: center;
        margin-bottom: 30px;
        color: #555;
    }

    .header, .metric {
        align-items: left;
        font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
        margin-bottom: 20px;
    }

    .container {
        max-width: 1000px;  
        margin: 0 auto;  
        padding: 5px;
    }

    table {
        width: 100%;
        border-collapse: collapse;
        border-radius: 10px;
        overflow: hidden;
    }

    th, td {
        padding: 8px;
        text-align: center;
        border: 1px solid #ddd;
        font-family: 'Arial', sans-serif; /* or use a similar sans-serif font */
        font-size: 16px;
        transition: background-color 0.3s;
    }

    th {
        background-color: #f2f2f2;
        font-weight: bold;
    }

    td:hover {
        background-color: #eaeaea;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Display title and description
st.markdown('<div class="container">', unsafe_allow_html=True)
# st.image(logo_image, output_format="PNG", width=200)

# Convert the image to base64
buffered = BytesIO()
logo_image.save(buffered, format="PNG")
img_data = base64.b64encode(buffered.getvalue()).decode("utf-8")
st.markdown(
    f"""
    <style>
    .logo-container {{
        display: flex;
        justify-content: flex-start;  /* Aligns to the left */
    }}
    .logo-container img {{
        width: 50%;  /* Adjust this to control the width, e.g., 50% of container width */
        margin: 0 auto; 
        max-width: 700px;  /* Set a maximum width */
        background-color: transparent;
    }}
    </style>
    <div class="logo-container">
        <img src="data:image/png;base64,{img_data}" alt="FactBench Leaderboard Logo">
    </div>
    """,
    unsafe_allow_html=True
)

# header_md_text = HEADER_MD # make some parameters later
# gr.Markdown(header_md_text, elem_classes="markdown-text") 

st.markdown(
    '''
    <div class="header">
        <br/>
        <p style="font-size:22px;">
        πŸ”Ž FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
        </p>
        <p style="font-size:20px;">
            πŸ“‘ <a href="#">Paper</a> | πŸ’» <a href="https://github.com/launchnlp/FactBench">GitHub</a> | πŸ€— <a href="https://huggingface.co/datasets/launch/FactBench">HuggingFace</a> | 🐦 <a href="#">X</a> | πŸ’¬ <a href="#">Discussion</a> |
            βš™οΈ <strong>Version</strong>: <strong>V1</strong> | <strong># Models</strong>: 7 | Updated: <strong>10/26/2024</strong>
        </p>
    </div>
    ''',
    unsafe_allow_html=True
)


# st.markdown('<div class="title">FactBench Leaderboard</div>',
#             unsafe_allow_html=True)
# st.markdown('<div class="description">Benchmark for LM Factuality Evaluation</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)

# Load the data
data_path = "tiered_models_data.csv"
df = pd.read_csv(data_path)

# Assign ranks within each tier based on factuality_score
df['rank'] = df.groupby('tier')['factuality_score'].rank(
    ascending=False, method='min').astype(int)

# Replace NaN values with '-'
df.fillna('-', inplace=True)

df['original_order'] = df.groupby('tier').cumcount()

# Create tabs
st.markdown("""
    <style>
        .stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
            font-size: 20px;
        }
    </style>
""", unsafe_allow_html=True)

tab1, tab2, tab3 = st.tabs(["Leaderboard", "Benchmark Details", "Submit your models"])

# Tab 1: Leaderboard
with tab1:
    # df['original_order'] = df.groupby('tier').cumcount()
    # print(df['original_order'])
    
    # st.markdown('<div class="title">Leaderboard</div>', unsafe_allow_html=True)
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    st.markdown("""
    <div class="metric" style="font-size:20px; font-weight: bold;">
    Metrics Explanation
    </div>
    """, unsafe_allow_html=True)

    st.markdown("""
    <div class="metric" style="font-size:16px;">
        <br/>
        <p>
        <strong> 🎯 Factual Precision </strong> measures the ratio of supported units divided by all units averaged over model responses. <strong> πŸŒ€ Hallucination Score </strong> quantifies the incorrect or inconclusive contents within a model response, as described in the paper. We also provide statistics on the average length of the response in terms of the number of tokens, the average verifiable units existing in the model responses (<strong>Avg. # Units</strong>), the average number of units labelled as undecidable (<strong>Avg. # Undecided</strong>), and the average number of units labelled as unsupported (<strong>Avg. # Unsupported</strong>).  
        </p>
        <p>
        πŸ”’ for closed LLMs; πŸ”‘ for open-weights LLMs; 🚨 for newly added models"
        </p>
    </div>
    """,
    unsafe_allow_html=True
    )
    
    st.markdown("""
    <style>
        /* Selectbox text */
        div[data-baseweb="select"] > div {
            font-size: 20px;
        }
        
        /* Dropdown options */
        div[role="listbox"] ul li {
            font-size: 20px !important;
        }
        
        /* Checkbox label */
        .stCheckbox label p {
            font-size: 20px !important;
        }
        
        /* Selectbox label */
        .stSelectbox label p {
            font-size: 20px !important;
        }
    </style>
""", unsafe_allow_html=True)
    
    # Dropdown menu to filter tiers
    tiers = ['All Tiers', 'Tier 1: Hard', 'Tier 2: Moderate', 'Tier 3: Easy']
    selected_tier = st.selectbox('Select Tier:', tiers)

    # Filter the data based on the selected tier
    if selected_tier != 'All Tiers':
        filtered_df = df[df['tier'] == selected_tier]
    else:
        filtered_df = df

    sort_by_factuality = st.checkbox('Sort by Factuality Score')

    # Sort the dataframe based on Factuality Score if the checkbox is selected
    if sort_by_factuality:
        updated_filtered_df = filtered_df.sort_values(
            by=['tier', 'factuality_score'], ascending=[True, False]
        )
    else:
        updated_filtered_df = filtered_df.sort_values(
            by=['tier', 'original_order']
        )

    # Create HTML for the table
    if selected_tier == 'All Tiers':
        html = '''
        <table>
            <thead>
                <tr>
                    <th>Tier</th>
                    <th>Rank</th>
                    <th>Model</th>
                    <th>🎯 Factual Precision</th>
                    <th>πŸŒ€ Hallucination Score</th>
                    <th>Avg. # Tokens</th>
                    <th>Avg. # Units</th>
                    <th>Avg. # Undecidable</th>
                    <th>Avg. # Unsupported</th>
                </tr>
            </thead>
            <tbody>
        '''
    else:
        html = '''
        <table>
            <thead>
                <tr>
                    <th>Rank</th>
                    <th>Model</th>
                    <th>🎯 Factual Precision</th>
                    <th>πŸŒ€ Hallucination Score</th>
                    <th>Avg. # Tokens</th>
                    <th>Avg. # Units</th>
                    <th>Avg. # Undecidable</th>
                    <th>Avg. # Unsupported</th>
                </tr>
            </thead>
            <tbody>
        '''

    # Generate the rows of the table
    current_tier = None
    for i, row in updated_filtered_df.iterrows():
        html += '<tr>'

        # Only display the 'Tier' column if 'All Tiers' is selected
        if selected_tier == 'All Tiers':
            if row['tier'] != current_tier:
                current_tier = row['tier']
                html += f'<td rowspan="7" style="vertical-align: middle;">{current_tier}</td>'

        # Fill in model and scores
        html += f'''
            <td>{row['rank']}</td>
            <td>{row['model']}</td>
            <td>{row['factuality_score']}</td>
            <td>{row['hallucination_score']}</td>
            <td>{row['avg_tokens']}</td>
            <td>{row['avg_factual_units']}</td>
            <td>{row['avg_undecidable_units']:.2f}</td>
            <td>{row['avg_unsupported_units']:.2f}</td>
        </tr>
    '''

    # Close the table
    html += '''
    </table>
    '''

    # Display the table
    st.markdown(html, unsafe_allow_html=True)

    st.markdown('</div>', unsafe_allow_html=True)

# Tab 2: Details
with tab2:
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    st.markdown('<div class="title">Benchmark Details</div>',
                unsafe_allow_html=True)
    st.image(image, use_column_width=True)

    st.markdown('### VERIFY: A Pipeline for Factuality Evaluation')
    st.write(
        "Language models (LMs) are widely used by an increasing number of users, "
        "underscoring the challenge of maintaining factual accuracy across a broad range of topics. "
        "We present VERIFY (Verification and Evidence Retrieval for Factuality evaluation), "
        "a pipeline to evaluate LMs' factual accuracy in real-world user interactions."
    )

    st.markdown('### Content Categorization')
    st.write(
        "VERIFY considers the verifiability of LM-generated content and categorizes content units as "
        "`supported`, `unsupported`, or `undecidable` based on the retrieved web evidence. "
        "Importantly, VERIFY's factuality judgments correlate better with human evaluations than existing methods."
    )

    st.markdown('### Hallucination Prompts & FactBench Dataset')
    st.write(
        "Using VERIFY, we identify 'hallucination prompts' across diverse topicsβ€”those eliciting the highest rates of "
        "incorrect or unverifiable LM responses. These prompts form FactBench, a dataset of 985 prompts across 213 "
        "fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and is "
        "regularly updated with new prompts."
    )

    st.markdown('</div>', unsafe_allow_html=True)

# Tab 3: Links
with tab3:
    st.markdown('<div class="tab-content">', unsafe_allow_html=True)

    st.markdown('<div class="title">Submit your model information on our Github</div>',
                unsafe_allow_html=True)

    st.markdown(
        '[Test your model locally!](https://github.com/FarimaFatahi/FactEval)')
    st.markdown(
        '[Submit results or issues!](https://github.com/FarimaFatahi/FactEval/issues/new)')

    st.markdown('</div>', unsafe_allow_html=True)