Spaces:
Sleeping
Sleeping
Lautaro Cardarelli
commited on
Commit
·
f555fb0
1
Parent(s):
23ea224
add qa model
Browse files- app.py +19 -4
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -7,6 +7,8 @@ from transformers import BartForConditionalGeneration
|
|
| 7 |
from transformers import BartTokenizer
|
| 8 |
from transformers import PreTrainedModel
|
| 9 |
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
|
| 10 |
|
| 11 |
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
| 12 |
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
|
@@ -94,9 +96,22 @@ def generate_summary(text):
|
|
| 94 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 95 |
return summary
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
class SummarizerAndQA:
|
|
@@ -114,9 +129,9 @@ class SummarizerAndQA:
|
|
| 114 |
self.summary = generate_summary(text)
|
| 115 |
self.study_generated_questions = generate_questions(text)
|
| 116 |
|
| 117 |
-
if question != self.question:
|
| 118 |
self.question = question
|
| 119 |
-
self.question_response = generate_question_response(question)
|
| 120 |
|
| 121 |
return self.summary, self.study_generated_questions, self.question_response
|
| 122 |
|
|
|
|
| 7 |
from transformers import BartTokenizer
|
| 8 |
from transformers import PreTrainedModel
|
| 9 |
from transformers import PreTrainedTokenizer
|
| 10 |
+
from transformers import AutoTokenizer
|
| 11 |
+
from transformers import AutoModelForSeq2SeqLM
|
| 12 |
|
| 13 |
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
|
| 14 |
model = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
|
|
|
|
| 96 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 97 |
return summary
|
| 98 |
|
| 99 |
+
# QA
|
| 100 |
+
# Cargar el modelo para preguntas y respuestas
|
| 101 |
+
qa_model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
| 102 |
+
qa_tokenizer = AutoTokenizer.from_pretrained(qa_model_name)
|
| 103 |
+
qa_model = AutoModelForSeq2SeqLM.from_pretrained(qa_model_name)
|
| 104 |
|
| 105 |
+
|
| 106 |
+
def generate_question_response(question, context):
|
| 107 |
+
# Formar el input para el modelo de preguntas y respuestas
|
| 108 |
+
input_text = f"question: {question} context: {context}"
|
| 109 |
+
encoded_input = qa_tokenizer(input_text, return_tensors='pt', max_length=1024, truncation=True)
|
| 110 |
+
output = qa_model.generate(input_ids=encoded_input['input_ids'], attention_mask=encoded_input['attention_mask'])
|
| 111 |
+
response_en = qa_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 112 |
+
translator = Translator()
|
| 113 |
+
translated_response = translator.translate(response_en, dest='es').text
|
| 114 |
+
return f'Respuesta: {translated_response}'
|
| 115 |
|
| 116 |
|
| 117 |
class SummarizerAndQA:
|
|
|
|
| 129 |
self.summary = generate_summary(text)
|
| 130 |
self.study_generated_questions = generate_questions(text)
|
| 131 |
|
| 132 |
+
if question != self.question and text != '':
|
| 133 |
self.question = question
|
| 134 |
+
self.question_response = generate_question_response(question, text)
|
| 135 |
|
| 136 |
return self.summary, self.study_generated_questions, self.question_response
|
| 137 |
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ accelerate
|
|
| 5 |
# We are using this fork since the orignal google library uses an old package version of httpx
|
| 6 |
# which is not compatible with the last version of gradio
|
| 7 |
googletrans-py
|
| 8 |
-
sentencepiece
|
|
|
|
|
|
| 5 |
# We are using this fork since the orignal google library uses an old package version of httpx
|
| 6 |
# which is not compatible with the last version of gradio
|
| 7 |
googletrans-py
|
| 8 |
+
sentencepiece
|
| 9 |
+
protobuf
|