Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -81,37 +81,17 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
|
|
81 |
img2img_type = None, img = None,
|
82 |
controlnet_scale= None, ip_adapter_scale=None,):
|
83 |
avg_diff = avg_diff_x.cuda()
|
84 |
-
torch.manual_seed(seed)
|
85 |
if img2img_type=="controlnet canny" and img is not None:
|
86 |
control_img = process_controlnet_img(img)
|
87 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
88 |
elif img2img_type=="ip adapter" and img is not None:
|
89 |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
90 |
else:
|
91 |
-
image = clip_slider.generate(prompt,
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
@spaces.GPU
|
97 |
-
def update_x(x,y,prompt,seed, steps,
|
98 |
-
avg_diff_x, avg_diff_y,
|
99 |
-
img2img_type = None,
|
100 |
-
img = None):
|
101 |
-
avg_diff = avg_diff_x.cuda()
|
102 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
103 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
104 |
return image
|
105 |
|
106 |
-
@spaces.GPU
|
107 |
-
def update_y(x,y,prompt,seed, steps,
|
108 |
-
avg_diff_x, avg_diff_y,
|
109 |
-
img2img_type = None,
|
110 |
-
img = None):
|
111 |
-
avg_diff = avg_diff_x.cuda()
|
112 |
-
avg_diff_2nd = avg_diff_y.cuda()
|
113 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
114 |
-
return image
|
115 |
|
116 |
def reset_recalc_directions():
|
117 |
return True
|
@@ -188,7 +168,7 @@ with gr.Blocks(css=css) as demo:
|
|
188 |
submit = gr.Button("find directions")
|
189 |
with gr.Column():
|
190 |
with gr.Group(elem_id="group"):
|
191 |
-
x = gr.Slider(minimum=-3, value=0, maximum=3.5, elem_id="x", interactive=False)
|
192 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
193 |
output_image = gr.Image(elem_id="image_out")
|
194 |
# with gr.Row():
|
|
|
81 |
img2img_type = None, img = None,
|
82 |
controlnet_scale= None, ip_adapter_scale=None,):
|
83 |
avg_diff = avg_diff_x.cuda()
|
|
|
84 |
if img2img_type=="controlnet canny" and img is not None:
|
85 |
control_img = process_controlnet_img(img)
|
86 |
image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
87 |
elif img2img_type=="ip adapter" and img is not None:
|
88 |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
89 |
else:
|
90 |
+
image = clip_slider.generate(prompt,
|
91 |
+
#guidance_scale=guidance_scale,
|
92 |
+
scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return image
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
def reset_recalc_directions():
|
97 |
return True
|
|
|
168 |
submit = gr.Button("find directions")
|
169 |
with gr.Column():
|
170 |
with gr.Group(elem_id="group"):
|
171 |
+
x = gr.Slider(minimum=-3, value=0, step=0.1, maximum=3.5, elem_id="x", interactive=False)
|
172 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
173 |
output_image = gr.Image(elem_id="image_out")
|
174 |
# with gr.Row():
|