linoyts HF staff commited on
Commit
caf0955
·
verified ·
1 Parent(s): f9ff3b6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -24
app.py CHANGED
@@ -81,37 +81,17 @@ def update_scales(x,prompt,seed, steps, guidance_scale,
81
  img2img_type = None, img = None,
82
  controlnet_scale= None, ip_adapter_scale=None,):
83
  avg_diff = avg_diff_x.cuda()
84
- torch.manual_seed(seed)
85
  if img2img_type=="controlnet canny" and img is not None:
86
  control_img = process_controlnet_img(img)
87
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
88
  elif img2img_type=="ip adapter" and img is not None:
89
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
90
  else:
91
- image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
92
- return image
93
-
94
-
95
-
96
- @spaces.GPU
97
- def update_x(x,y,prompt,seed, steps,
98
- avg_diff_x, avg_diff_y,
99
- img2img_type = None,
100
- img = None):
101
- avg_diff = avg_diff_x.cuda()
102
- avg_diff_2nd = avg_diff_y.cuda()
103
- image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
104
  return image
105
 
106
- @spaces.GPU
107
- def update_y(x,y,prompt,seed, steps,
108
- avg_diff_x, avg_diff_y,
109
- img2img_type = None,
110
- img = None):
111
- avg_diff = avg_diff_x.cuda()
112
- avg_diff_2nd = avg_diff_y.cuda()
113
- image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
114
- return image
115
 
116
  def reset_recalc_directions():
117
  return True
@@ -188,7 +168,7 @@ with gr.Blocks(css=css) as demo:
188
  submit = gr.Button("find directions")
189
  with gr.Column():
190
  with gr.Group(elem_id="group"):
191
- x = gr.Slider(minimum=-3, value=0, maximum=3.5, elem_id="x", interactive=False)
192
  #y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
193
  output_image = gr.Image(elem_id="image_out")
194
  # with gr.Row():
 
81
  img2img_type = None, img = None,
82
  controlnet_scale= None, ip_adapter_scale=None,):
83
  avg_diff = avg_diff_x.cuda()
 
84
  if img2img_type=="controlnet canny" and img is not None:
85
  control_img = process_controlnet_img(img)
86
  image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
87
  elif img2img_type=="ip adapter" and img is not None:
88
  image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
89
  else:
90
+ image = clip_slider.generate(prompt,
91
+ #guidance_scale=guidance_scale,
92
+ scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
 
 
 
 
 
 
 
 
 
 
93
  return image
94
 
 
 
 
 
 
 
 
 
 
95
 
96
  def reset_recalc_directions():
97
  return True
 
168
  submit = gr.Button("find directions")
169
  with gr.Column():
170
  with gr.Group(elem_id="group"):
171
+ x = gr.Slider(minimum=-3, value=0, step=0.1, maximum=3.5, elem_id="x", interactive=False)
172
  #y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
173
  output_image = gr.Image(elem_id="image_out")
174
  # with gr.Row():