diff --git "a/gpt_langchain.py" "b/gpt_langchain.py"
deleted file mode 100644--- "a/gpt_langchain.py"
+++ /dev/null
@@ -1,5443 +0,0 @@
-import ast
-import asyncio
-import copy
-import functools
-import glob
-import gzip
-import inspect
-import json
-import os
-import pathlib
-import pickle
-import shutil
-import subprocess
-import tempfile
-import time
-import traceback
-import types
-import typing
-import urllib.error
-import uuid
-import zipfile
-from collections import defaultdict
-from datetime import datetime
-from functools import reduce
-from operator import concat
-import filelock
-import tabulate
-import yaml
-
-from joblib import delayed
-from langchain.callbacks import streaming_stdout
-from langchain.embeddings import HuggingFaceInstructEmbeddings
-from langchain.llms.huggingface_pipeline import VALID_TASKS
-from langchain.llms.utils import enforce_stop_tokens
-from langchain.schema import LLMResult, Generation
-from langchain.tools import PythonREPLTool
-from langchain.tools.json.tool import JsonSpec
-from tqdm import tqdm
-
-from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
-    get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer, \
-    have_libreoffice, have_arxiv, have_playwright, have_selenium, have_tesseract, have_doctr, have_pymupdf, set_openai, \
-    get_list_or_str, have_pillow, only_selenium, only_playwright, only_unstructured_urls, get_sha, get_short_name, \
-    get_accordion, have_jq, get_doc, get_source, have_chromamigdb, get_token_count, reverse_ucurve_list
-from enums import DocumentSubset, no_lora_str, model_token_mapping, source_prefix, source_postfix, non_query_commands, \
-    LangChainAction, LangChainMode, DocumentChoice, LangChainTypes, font_size, head_acc, super_source_prefix, \
-    super_source_postfix, langchain_modes_intrinsic, get_langchain_prompts, LangChainAgent
-from evaluate_params import gen_hyper, gen_hyper0
-from gen import get_model, SEED, get_limited_prompt, get_docs_tokens
-from prompter import non_hf_types, PromptType, Prompter
-from src.serpapi import H2OSerpAPIWrapper
-from utils_langchain import StreamingGradioCallbackHandler, _chunk_sources, _add_meta, add_parser, fix_json_meta
-
-import_matplotlib()
-
-import numpy as np
-import pandas as pd
-import requests
-from langchain.chains.qa_with_sources import load_qa_with_sources_chain
-# , GCSDirectoryLoader, GCSFileLoader
-# , OutlookMessageLoader # GPL3
-# ImageCaptionLoader, # use our own wrapper
-#  ReadTheDocsLoader,  # no special file, some path, so have to give as special option
-from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
-    UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
-    EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
-    UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader, \
-    UnstructuredExcelLoader, JSONLoader
-from langchain.text_splitter import Language
-from langchain.chains.question_answering import load_qa_chain
-from langchain.docstore.document import Document
-from langchain import PromptTemplate, HuggingFaceTextGenInference, HuggingFacePipeline
-from langchain.vectorstores import Chroma
-from chromamig import ChromaMig
-
-
-def split_list(input_list, split_size):
-    for i in range(0, len(input_list), split_size):
-        yield input_list[i:i + split_size]
-
-
-def get_db(sources, use_openai_embedding=False, db_type='faiss',
-           persist_directory=None, load_db_if_exists=True,
-           langchain_mode='notset',
-           langchain_mode_paths={},
-           langchain_mode_types={},
-           collection_name=None,
-           hf_embedding_model=None,
-           migrate_embedding_model=False,
-           auto_migrate_db=False,
-           n_jobs=-1):
-    if not sources:
-        return None
-    user_path = langchain_mode_paths.get(langchain_mode)
-    if persist_directory is None:
-        langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
-        persist_directory, langchain_type = get_persist_directory(langchain_mode, langchain_type=langchain_type)
-        langchain_mode_types[langchain_mode] = langchain_type
-    assert hf_embedding_model is not None
-
-    # get freshly-determined embedding model
-    embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
-    assert collection_name is not None or langchain_mode != 'notset'
-    if collection_name is None:
-        collection_name = langchain_mode.replace(' ', '_')
-
-    # Create vector database
-    if db_type == 'faiss':
-        from langchain.vectorstores import FAISS
-        db = FAISS.from_documents(sources, embedding)
-    elif db_type == 'weaviate':
-        import weaviate
-        from weaviate.embedded import EmbeddedOptions
-        from langchain.vectorstores import Weaviate
-
-        if os.getenv('WEAVIATE_URL', None):
-            client = _create_local_weaviate_client()
-        else:
-            client = weaviate.Client(
-                embedded_options=EmbeddedOptions(persistence_data_path=persist_directory)
-            )
-        index_name = collection_name.capitalize()
-        db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
-                                     index_name=index_name)
-    elif db_type in ['chroma', 'chroma_old']:
-        assert persist_directory is not None
-        # use_base already handled when making persist_directory, unless was passed into get_db()
-        makedirs(persist_directory, exist_ok=True)
-
-        # see if already actually have persistent db, and deal with possible changes in embedding
-        db, use_openai_embedding, hf_embedding_model = \
-            get_existing_db(None, persist_directory, load_db_if_exists, db_type,
-                            use_openai_embedding,
-                            langchain_mode, langchain_mode_paths, langchain_mode_types,
-                            hf_embedding_model, migrate_embedding_model, auto_migrate_db,
-                            verbose=False,
-                            n_jobs=n_jobs)
-        if db is None:
-            import logging
-            logging.getLogger("chromadb").setLevel(logging.ERROR)
-            if db_type == 'chroma':
-                from chromadb.config import Settings
-                settings_extra_kwargs = dict(is_persistent=True)
-            else:
-                from chromamigdb.config import Settings
-                settings_extra_kwargs = dict(chroma_db_impl="duckdb+parquet")
-            client_settings = Settings(anonymized_telemetry=False,
-                                       persist_directory=persist_directory,
-                                       **settings_extra_kwargs)
-            if n_jobs in [None, -1]:
-                n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
-                num_threads = max(1, min(n_jobs, 8))
-            else:
-                num_threads = max(1, n_jobs)
-            collection_metadata = {"hnsw:num_threads": num_threads}
-            from_kwargs = dict(embedding=embedding,
-                               persist_directory=persist_directory,
-                               collection_name=collection_name,
-                               client_settings=client_settings,
-                               collection_metadata=collection_metadata)
-            if db_type == 'chroma':
-                import chromadb
-                api = chromadb.PersistentClient(path=persist_directory)
-                max_batch_size = api._producer.max_batch_size
-                sources_batches = split_list(sources, max_batch_size)
-                for sources_batch in sources_batches:
-                    db = Chroma.from_documents(documents=sources_batch, **from_kwargs)
-                    db.persist()
-            else:
-                db = ChromaMig.from_documents(documents=sources, **from_kwargs)
-            clear_embedding(db)
-            save_embed(db, use_openai_embedding, hf_embedding_model)
-        else:
-            # then just add
-            # doesn't check or change embedding, just saves it in case not saved yet, after persisting
-            db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
-                                                                  use_openai_embedding=use_openai_embedding,
-                                                                  hf_embedding_model=hf_embedding_model)
-    else:
-        raise RuntimeError("No such db_type=%s" % db_type)
-
-    # once here, db is not changing and embedding choices in calling functions does not matter
-    return db
-
-
-def _get_unique_sources_in_weaviate(db):
-    batch_size = 100
-    id_source_list = []
-    result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)
-
-    while result['objects']:
-        id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
-        last_id = id_source_list[-1][0]
-        result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)
-
-    unique_sources = {source for _, source in id_source_list}
-    return unique_sources
-
-
-def del_from_db(db, sources, db_type=None):
-    if db_type in ['chroma', 'chroma_old'] and db is not None:
-        # sources should be list of x.metadata['source'] from document metadatas
-        if isinstance(sources, str):
-            sources = [sources]
-        else:
-            assert isinstance(sources, (list, tuple, types.GeneratorType))
-        metadatas = set(sources)
-        client_collection = db._client.get_collection(name=db._collection.name,
-                                                      embedding_function=db._collection._embedding_function)
-        for source in metadatas:
-            meta = dict(source=source)
-            try:
-                client_collection.delete(where=meta)
-            except KeyError:
-                pass
-
-
-def add_to_db(db, sources, db_type='faiss',
-              avoid_dup_by_file=False,
-              avoid_dup_by_content=True,
-              use_openai_embedding=False,
-              hf_embedding_model=None):
-    assert hf_embedding_model is not None
-    num_new_sources = len(sources)
-    if not sources:
-        return db, num_new_sources, []
-    if db_type == 'faiss':
-        db.add_documents(sources)
-    elif db_type == 'weaviate':
-        # FIXME: only control by file name, not hash yet
-        if avoid_dup_by_file or avoid_dup_by_content:
-            unique_sources = _get_unique_sources_in_weaviate(db)
-            sources = [x for x in sources if x.metadata['source'] not in unique_sources]
-        num_new_sources = len(sources)
-        if num_new_sources == 0:
-            return db, num_new_sources, []
-        db.add_documents(documents=sources)
-    elif db_type in ['chroma', 'chroma_old']:
-        collection = get_documents(db)
-        # files we already have:
-        metadata_files = set([x['source'] for x in collection['metadatas']])
-        if avoid_dup_by_file:
-            # Too weak in case file changed content, assume parent shouldn't pass true for this for now
-            raise RuntimeError("Not desired code path")
-        if avoid_dup_by_content:
-            # look at hash, instead of page_content
-            # migration: If no hash previously, avoid updating,
-            #  since don't know if need to update and may be expensive to redo all unhashed files
-            metadata_hash_ids = set(
-                [x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
-            # avoid sources with same hash
-            sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
-            num_nohash = len([x for x in sources if not x.metadata.get('hashid')])
-            print("Found %s new sources (%d have no hash in original source,"
-                  " so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True)
-            # get new file names that match existing file names.  delete existing files we are overridding
-            dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
-            print("Removing %s duplicate files from db because ingesting those as new documents" % len(
-                dup_metadata_files), flush=True)
-            client_collection = db._client.get_collection(name=db._collection.name,
-                                                          embedding_function=db._collection._embedding_function)
-            for dup_file in dup_metadata_files:
-                dup_file_meta = dict(source=dup_file)
-                try:
-                    client_collection.delete(where=dup_file_meta)
-                except KeyError:
-                    pass
-        num_new_sources = len(sources)
-        if num_new_sources == 0:
-            return db, num_new_sources, []
-        if hasattr(db, '_persist_directory'):
-            print("Existing db, adding to %s" % db._persist_directory, flush=True)
-            # chroma only
-            lock_file = get_db_lock_file(db)
-            context = filelock.FileLock
-        else:
-            lock_file = None
-            context = NullContext
-        with context(lock_file):
-            # this is place where add to db, but others maybe accessing db, so lock access.
-            # else see RuntimeError: Index seems to be corrupted or unsupported
-            import chromadb
-            api = chromadb.PersistentClient(path=db._persist_directory)
-            max_batch_size = api._producer.max_batch_size
-            sources_batches = split_list(sources, max_batch_size)
-            for sources_batch in sources_batches:
-                db.add_documents(documents=sources_batch)
-                db.persist()
-            clear_embedding(db)
-            # save here is for migration, in case old db directory without embedding saved
-            save_embed(db, use_openai_embedding, hf_embedding_model)
-    else:
-        raise RuntimeError("No such db_type=%s" % db_type)
-
-    new_sources_metadata = [x.metadata for x in sources]
-
-    return db, num_new_sources, new_sources_metadata
-
-
-def create_or_update_db(db_type, persist_directory, collection_name,
-                        user_path, langchain_type,
-                        sources, use_openai_embedding, add_if_exists, verbose,
-                        hf_embedding_model, migrate_embedding_model, auto_migrate_db,
-                        n_jobs=-1):
-    if not os.path.isdir(persist_directory) or not add_if_exists:
-        if os.path.isdir(persist_directory):
-            if verbose:
-                print("Removing %s" % persist_directory, flush=True)
-            remove(persist_directory)
-        if verbose:
-            print("Generating db", flush=True)
-    if db_type == 'weaviate':
-        import weaviate
-        from weaviate.embedded import EmbeddedOptions
-
-        if os.getenv('WEAVIATE_URL', None):
-            client = _create_local_weaviate_client()
-        else:
-            client = weaviate.Client(
-                embedded_options=EmbeddedOptions(persistence_data_path=persist_directory)
-            )
-
-        index_name = collection_name.replace(' ', '_').capitalize()
-        if client.schema.exists(index_name) and not add_if_exists:
-            client.schema.delete_class(index_name)
-            if verbose:
-                print("Removing %s" % index_name, flush=True)
-    elif db_type in ['chroma', 'chroma_old']:
-        pass
-
-    if not add_if_exists:
-        if verbose:
-            print("Generating db", flush=True)
-    else:
-        if verbose:
-            print("Loading and updating db", flush=True)
-
-    db = get_db(sources,
-                use_openai_embedding=use_openai_embedding,
-                db_type=db_type,
-                persist_directory=persist_directory,
-                langchain_mode=collection_name,
-                langchain_mode_paths={collection_name: user_path},
-                langchain_mode_types={collection_name: langchain_type},
-                hf_embedding_model=hf_embedding_model,
-                migrate_embedding_model=migrate_embedding_model,
-                auto_migrate_db=auto_migrate_db,
-                n_jobs=n_jobs)
-
-    return db
-
-
-from langchain.embeddings import FakeEmbeddings
-
-
-class H2OFakeEmbeddings(FakeEmbeddings):
-    """Fake embedding model, but constant instead of random"""
-
-    size: int
-    """The size of the embedding vector."""
-
-    def _get_embedding(self) -> typing.List[float]:
-        return [1] * self.size
-
-    def embed_documents(self, texts: typing.List[str]) -> typing.List[typing.List[float]]:
-        return [self._get_embedding() for _ in texts]
-
-    def embed_query(self, text: str) -> typing.List[float]:
-        return self._get_embedding()
-
-
-def get_embedding(use_openai_embedding, hf_embedding_model=None, preload=False):
-    assert hf_embedding_model is not None
-    # Get embedding model
-    if use_openai_embedding:
-        assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
-        from langchain.embeddings import OpenAIEmbeddings
-        embedding = OpenAIEmbeddings(disallowed_special=())
-    elif hf_embedding_model == 'fake':
-        embedding = H2OFakeEmbeddings(size=1)
-    else:
-        if isinstance(hf_embedding_model, str):
-            pass
-        elif isinstance(hf_embedding_model, dict):
-            # embedding itself preloaded globally
-            return hf_embedding_model['model']
-        else:
-            # object
-            return hf_embedding_model
-        # to ensure can fork without deadlock
-        from langchain.embeddings import HuggingFaceEmbeddings
-
-        device, torch_dtype, context_class = get_device_dtype()
-        model_kwargs = dict(device=device)
-        if 'instructor' in hf_embedding_model:
-            encode_kwargs = {'normalize_embeddings': True}
-            embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
-                                                      model_kwargs=model_kwargs,
-                                                      encode_kwargs=encode_kwargs)
-        else:
-            embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
-        embedding.client.preload = preload
-    return embedding
-
-
-def get_answer_from_sources(chain, sources, question):
-    return chain(
-        {
-            "input_documents": sources,
-            "question": question,
-        },
-        return_only_outputs=True,
-    )["output_text"]
-
-
-"""Wrapper around Huggingface text generation inference API."""
-from functools import partial
-from typing import Any, Dict, List, Optional, Set, Iterable
-
-from pydantic import Extra, Field, root_validator
-
-from langchain.callbacks.manager import CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun
-from langchain.llms.base import LLM
-
-
-class GradioInference(LLM):
-    """
-    Gradio generation inference API.
-    """
-    inference_server_url: str = ""
-
-    temperature: float = 0.8
-    top_p: Optional[float] = 0.95
-    top_k: Optional[int] = None
-    num_beams: Optional[int] = 1
-    max_new_tokens: int = 512
-    min_new_tokens: int = 1
-    early_stopping: bool = False
-    max_time: int = 180
-    repetition_penalty: Optional[float] = None
-    num_return_sequences: Optional[int] = 1
-    do_sample: bool = False
-    chat_client: bool = False
-
-    return_full_text: bool = False
-    stream_output: bool = False
-    sanitize_bot_response: bool = False
-
-    prompter: Any = None
-    context: Any = ''
-    iinput: Any = ''
-    client: Any = None
-    tokenizer: Any = None
-
-    system_prompt: Any = None
-    visible_models: Any = None
-    h2ogpt_key: Any = None
-
-    count_input_tokens: Any = 0
-    count_output_tokens: Any = 0
-
-    min_max_new_tokens: Any = 256
-
-    class Config:
-        """Configuration for this pydantic object."""
-
-        extra = Extra.forbid
-
-    @root_validator()
-    def validate_environment(cls, values: Dict) -> Dict:
-        """Validate that python package exists in environment."""
-
-        try:
-            if values['client'] is None:
-                import gradio_client
-                values["client"] = gradio_client.Client(
-                    values["inference_server_url"]
-                )
-        except ImportError:
-            raise ImportError(
-                "Could not import gradio_client python package. "
-                "Please install it with `pip install gradio_client`."
-            )
-        return values
-
-    @property
-    def _llm_type(self) -> str:
-        """Return type of llm."""
-        return "gradio_inference"
-
-    def _call(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[CallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> str:
-        # NOTE: prompt here has no prompt_type (e.g. human: bot:) prompt injection,
-        # so server should get prompt_type or '', not plain
-        # This is good, so gradio server can also handle stopping.py conditions
-        # this is different than TGI server that uses prompter to inject prompt_type prompting
-        stream_output = self.stream_output
-        gr_client = self.client
-        client_langchain_mode = 'Disabled'
-        client_add_chat_history_to_context = True
-        client_add_search_to_context = False
-        client_chat_conversation = []
-        client_langchain_action = LangChainAction.QUERY.value
-        client_langchain_agents = []
-        top_k_docs = 1
-        chunk = True
-        chunk_size = 512
-        client_kwargs = dict(instruction=prompt if self.chat_client else '',  # only for chat=True
-                             iinput=self.iinput if self.chat_client else '',  # only for chat=True
-                             context=self.context,
-                             # streaming output is supported, loops over and outputs each generation in streaming mode
-                             # but leave stream_output=False for simple input/output mode
-                             stream_output=stream_output,
-                             prompt_type=self.prompter.prompt_type,
-                             prompt_dict='',
-
-                             temperature=self.temperature,
-                             top_p=self.top_p,
-                             top_k=self.top_k,
-                             num_beams=self.num_beams,
-                             max_new_tokens=self.max_new_tokens,
-                             min_new_tokens=self.min_new_tokens,
-                             early_stopping=self.early_stopping,
-                             max_time=self.max_time,
-                             repetition_penalty=self.repetition_penalty,
-                             num_return_sequences=self.num_return_sequences,
-                             do_sample=self.do_sample,
-                             chat=self.chat_client,
-
-                             instruction_nochat=prompt if not self.chat_client else '',
-                             iinput_nochat=self.iinput if not self.chat_client else '',
-                             langchain_mode=client_langchain_mode,
-                             add_chat_history_to_context=client_add_chat_history_to_context,
-                             langchain_action=client_langchain_action,
-                             langchain_agents=client_langchain_agents,
-                             top_k_docs=top_k_docs,
-                             chunk=chunk,
-                             chunk_size=chunk_size,
-                             document_subset=DocumentSubset.Relevant.name,
-                             document_choice=[DocumentChoice.ALL.value],
-                             pre_prompt_query=None,
-                             prompt_query=None,
-                             pre_prompt_summary=None,
-                             prompt_summary=None,
-                             system_prompt=self.system_prompt,
-                             image_loaders=None,  # don't need to further do doc specific things
-                             pdf_loaders=None,  # don't need to further do doc specific things
-                             url_loaders=None,  # don't need to further do doc specific things
-                             jq_schema=None,  # don't need to further do doc specific things
-                             visible_models=self.visible_models,
-                             h2ogpt_key=self.h2ogpt_key,
-                             add_search_to_context=client_add_search_to_context,
-                             chat_conversation=client_chat_conversation,
-                             text_context_list=None,
-                             docs_ordering_type=None,
-                             min_max_new_tokens=self.min_max_new_tokens,
-                             )
-        api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
-        self.count_input_tokens += self.get_num_tokens(prompt)
-
-        if not stream_output:
-            res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
-            res_dict = ast.literal_eval(res)
-            text = res_dict['response']
-            ret = self.prompter.get_response(prompt + text, prompt=prompt,
-                                             sanitize_bot_response=self.sanitize_bot_response)
-            self.count_output_tokens += self.get_num_tokens(ret)
-            return ret
-        else:
-            text_callback = None
-            if run_manager:
-                text_callback = partial(
-                    run_manager.on_llm_new_token, verbose=self.verbose
-                )
-
-            job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
-            text0 = ''
-            while not job.done():
-                if job.communicator.job.latest_status.code.name == 'FINISHED':
-                    break
-                e = job.future._exception
-                if e is not None:
-                    break
-                outputs_list = job.communicator.job.outputs
-                if outputs_list:
-                    res = job.communicator.job.outputs[-1]
-                    res_dict = ast.literal_eval(res)
-                    text = res_dict['response']
-                    text = self.prompter.get_response(prompt + text, prompt=prompt,
-                                                      sanitize_bot_response=self.sanitize_bot_response)
-                    # FIXME: derive chunk from full for now
-                    text_chunk = text[len(text0):]
-                    if not text_chunk:
-                        continue
-                    # save old
-                    text0 = text
-
-                    if text_callback:
-                        text_callback(text_chunk)
-
-                time.sleep(0.01)
-
-            # ensure get last output to avoid race
-            res_all = job.outputs()
-            if len(res_all) > 0:
-                res = res_all[-1]
-                res_dict = ast.literal_eval(res)
-                text = res_dict['response']
-                # FIXME: derive chunk from full for now
-            else:
-                # go with old if failure
-                text = text0
-            text_chunk = text[len(text0):]
-            if text_callback:
-                text_callback(text_chunk)
-            ret = self.prompter.get_response(prompt + text, prompt=prompt,
-                                             sanitize_bot_response=self.sanitize_bot_response)
-            self.count_output_tokens += self.get_num_tokens(ret)
-            return ret
-
-    def get_token_ids(self, text: str) -> List[int]:
-        return self.tokenizer.encode(text)
-        # avoid base method that is not aware of how to properly tokenize (uses GPT2)
-        # return _get_token_ids_default_method(text)
-
-
-class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference):
-    max_new_tokens: int = 512
-    do_sample: bool = False
-    top_k: Optional[int] = None
-    top_p: Optional[float] = 0.95
-    typical_p: Optional[float] = 0.95
-    temperature: float = 0.8
-    repetition_penalty: Optional[float] = None
-    return_full_text: bool = False
-    stop_sequences: List[str] = Field(default_factory=list)
-    seed: Optional[int] = None
-    inference_server_url: str = ""
-    timeout: int = 300
-    headers: dict = None
-    stream_output: bool = False
-    sanitize_bot_response: bool = False
-    prompter: Any = None
-    context: Any = ''
-    iinput: Any = ''
-    tokenizer: Any = None
-    async_sem: Any = None
-    count_input_tokens: Any = 0
-    count_output_tokens: Any = 0
-
-    def _call(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[CallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> str:
-        if stop is None:
-            stop = self.stop_sequences.copy()
-        else:
-            stop += self.stop_sequences.copy()
-        stop_tmp = stop.copy()
-        stop = []
-        [stop.append(x) for x in stop_tmp if x not in stop]
-
-        # HF inference server needs control over input tokens
-        assert self.tokenizer is not None
-        from h2oai_pipeline import H2OTextGenerationPipeline
-        prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
-
-        # NOTE: TGI server does not add prompting, so must do here
-        data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
-        prompt = self.prompter.generate_prompt(data_point)
-        self.count_input_tokens += self.get_num_tokens(prompt)
-
-        gen_server_kwargs = dict(do_sample=self.do_sample,
-                                 stop_sequences=stop,
-                                 max_new_tokens=self.max_new_tokens,
-                                 top_k=self.top_k,
-                                 top_p=self.top_p,
-                                 typical_p=self.typical_p,
-                                 temperature=self.temperature,
-                                 repetition_penalty=self.repetition_penalty,
-                                 return_full_text=self.return_full_text,
-                                 seed=self.seed,
-                                 )
-        gen_server_kwargs.update(kwargs)
-
-        # lower bound because client is re-used if multi-threading
-        self.client.timeout = max(300, self.timeout)
-
-        if not self.stream_output:
-            res = self.client.generate(
-                prompt,
-                **gen_server_kwargs,
-            )
-            if self.return_full_text:
-                gen_text = res.generated_text[len(prompt):]
-            else:
-                gen_text = res.generated_text
-            # remove stop sequences from the end of the generated text
-            for stop_seq in stop:
-                if stop_seq in gen_text:
-                    gen_text = gen_text[:gen_text.index(stop_seq)]
-            text = prompt + gen_text
-            text = self.prompter.get_response(text, prompt=prompt,
-                                              sanitize_bot_response=self.sanitize_bot_response)
-        else:
-            text_callback = None
-            if run_manager:
-                text_callback = partial(
-                    run_manager.on_llm_new_token, verbose=self.verbose
-                )
-            # parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
-            if text_callback:
-                text_callback(prompt)
-            text = ""
-            # Note: Streaming ignores return_full_text=True
-            for response in self.client.generate_stream(prompt, **gen_server_kwargs):
-                text_chunk = response.token.text
-                text += text_chunk
-                text = self.prompter.get_response(prompt + text, prompt=prompt,
-                                                  sanitize_bot_response=self.sanitize_bot_response)
-                # stream part
-                is_stop = False
-                for stop_seq in stop:
-                    if stop_seq in text_chunk:
-                        is_stop = True
-                        break
-                if is_stop:
-                    break
-                if not response.token.special:
-                    if text_callback:
-                        text_callback(text_chunk)
-        self.count_output_tokens += self.get_num_tokens(text)
-        return text
-
-    async def _acall(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> str:
-        # print("acall", flush=True)
-        if stop is None:
-            stop = self.stop_sequences.copy()
-        else:
-            stop += self.stop_sequences.copy()
-        stop_tmp = stop.copy()
-        stop = []
-        [stop.append(x) for x in stop_tmp if x not in stop]
-
-        # HF inference server needs control over input tokens
-        assert self.tokenizer is not None
-        from h2oai_pipeline import H2OTextGenerationPipeline
-        prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
-
-        # NOTE: TGI server does not add prompting, so must do here
-        data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
-        prompt = self.prompter.generate_prompt(data_point)
-
-        gen_text = await super()._acall(prompt, stop=stop, run_manager=run_manager, **kwargs)
-
-        # remove stop sequences from the end of the generated text
-        for stop_seq in stop:
-            if stop_seq in gen_text:
-                gen_text = gen_text[:gen_text.index(stop_seq)]
-        text = prompt + gen_text
-        text = self.prompter.get_response(text, prompt=prompt,
-                                          sanitize_bot_response=self.sanitize_bot_response)
-        # print("acall done", flush=True)
-        return text
-
-    async def _agenerate(
-            self,
-            prompts: List[str],
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> LLMResult:
-        """Run the LLM on the given prompt and input."""
-        generations = []
-        new_arg_supported = inspect.signature(self._acall).parameters.get("run_manager")
-        self.count_input_tokens += sum([self.get_num_tokens(prompt) for prompt in prompts])
-        tasks = [
-            asyncio.ensure_future(self._agenerate_one(prompt, stop=stop, run_manager=run_manager,
-                                                      new_arg_supported=new_arg_supported, **kwargs))
-            for prompt in prompts
-        ]
-        texts = await asyncio.gather(*tasks)
-        self.count_output_tokens += sum([self.get_num_tokens(text) for text in texts])
-        [generations.append([Generation(text=text)]) for text in texts]
-        return LLMResult(generations=generations)
-
-    async def _agenerate_one(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
-            new_arg_supported=None,
-            **kwargs: Any,
-    ) -> str:
-        async with self.async_sem:  # semaphore limits num of simultaneous downloads
-            return await self._acall(prompt, stop=stop, run_manager=run_manager, **kwargs) \
-                if new_arg_supported else \
-                await self._acall(prompt, stop=stop, **kwargs)
-
-    def get_token_ids(self, text: str) -> List[int]:
-        return self.tokenizer.encode(text)
-        # avoid base method that is not aware of how to properly tokenize (uses GPT2)
-        # return _get_token_ids_default_method(text)
-
-
-from langchain.chat_models import ChatOpenAI, AzureChatOpenAI
-from langchain.llms import OpenAI, AzureOpenAI, Replicate
-from langchain.llms.openai import _streaming_response_template, completion_with_retry, _update_response, \
-    update_token_usage
-
-
-class H2OOpenAI(OpenAI):
-    """
-    New class to handle vLLM's use of OpenAI, no vllm_chat supported, so only need here
-    Handles prompting that OpenAI doesn't need, stopping as well
-    """
-    stop_sequences: Any = None
-    sanitize_bot_response: bool = False
-    prompter: Any = None
-    context: Any = ''
-    iinput: Any = ''
-    tokenizer: Any = None
-
-    @classmethod
-    def _all_required_field_names(cls) -> Set:
-        _all_required_field_names = super(OpenAI, cls)._all_required_field_names()
-        _all_required_field_names.update(
-            {'top_p', 'frequency_penalty', 'presence_penalty', 'stop_sequences', 'sanitize_bot_response', 'prompter',
-             'tokenizer', 'logit_bias'})
-        return _all_required_field_names
-
-    def _generate(
-            self,
-            prompts: List[str],
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[CallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> LLMResult:
-        stop_tmp = self.stop_sequences if not stop else self.stop_sequences + stop
-        stop = []
-        [stop.append(x) for x in stop_tmp if x not in stop]
-
-        # HF inference server needs control over input tokens
-        assert self.tokenizer is not None
-        from h2oai_pipeline import H2OTextGenerationPipeline
-        for prompti, prompt in enumerate(prompts):
-            prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
-            # NOTE: OpenAI/vLLM server does not add prompting, so must do here
-            data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
-            prompt = self.prompter.generate_prompt(data_point)
-            prompts[prompti] = prompt
-
-        params = self._invocation_params
-        params = {**params, **kwargs}
-        sub_prompts = self.get_sub_prompts(params, prompts, stop)
-        choices = []
-        token_usage: Dict[str, int] = {}
-        # Get the token usage from the response.
-        # Includes prompt, completion, and total tokens used.
-        _keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
-        text = ''
-        for _prompts in sub_prompts:
-            if self.streaming:
-                text_with_prompt = ""
-                prompt = _prompts[0]
-                if len(_prompts) > 1:
-                    raise ValueError("Cannot stream results with multiple prompts.")
-                params["stream"] = True
-                response = _streaming_response_template()
-                first = True
-                for stream_resp in completion_with_retry(
-                        self, prompt=_prompts, **params
-                ):
-                    if first:
-                        stream_resp["choices"][0]["text"] = prompt + stream_resp["choices"][0]["text"]
-                        first = False
-                    text_chunk = stream_resp["choices"][0]["text"]
-                    text_with_prompt += text_chunk
-                    text = self.prompter.get_response(text_with_prompt, prompt=prompt,
-                                                      sanitize_bot_response=self.sanitize_bot_response)
-                    if run_manager:
-                        run_manager.on_llm_new_token(
-                            text_chunk,
-                            verbose=self.verbose,
-                            logprobs=stream_resp["choices"][0]["logprobs"],
-                        )
-                    _update_response(response, stream_resp)
-                choices.extend(response["choices"])
-            else:
-                response = completion_with_retry(self, prompt=_prompts, **params)
-                choices.extend(response["choices"])
-            if not self.streaming:
-                # Can't update token usage if streaming
-                update_token_usage(_keys, response, token_usage)
-        if self.streaming:
-            choices[0]['text'] = text
-        return self.create_llm_result(choices, prompts, token_usage)
-
-    def get_token_ids(self, text: str) -> List[int]:
-        if self.tokenizer is not None:
-            return self.tokenizer.encode(text)
-        else:
-            # OpenAI uses tiktoken
-            return super().get_token_ids(text)
-
-
-class H2OReplicate(Replicate):
-    stop_sequences: Any = None
-    sanitize_bot_response: bool = False
-    prompter: Any = None
-    context: Any = ''
-    iinput: Any = ''
-    tokenizer: Any = None
-
-    def _call(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[CallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> str:
-        """Call to replicate endpoint."""
-        stop_tmp = self.stop_sequences if not stop else self.stop_sequences + stop
-        stop = []
-        [stop.append(x) for x in stop_tmp if x not in stop]
-
-        # HF inference server needs control over input tokens
-        assert self.tokenizer is not None
-        from h2oai_pipeline import H2OTextGenerationPipeline
-        prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)
-        # Note Replicate handles the prompting of the specific model
-        return super()._call(prompt, stop=stop, run_manager=run_manager, **kwargs)
-
-    def get_token_ids(self, text: str) -> List[int]:
-        return self.tokenizer.encode(text)
-        # avoid base method that is not aware of how to properly tokenize (uses GPT2)
-        # return _get_token_ids_default_method(text)
-
-
-class H2OChatOpenAI(ChatOpenAI):
-    @classmethod
-    def _all_required_field_names(cls) -> Set:
-        _all_required_field_names = super(ChatOpenAI, cls)._all_required_field_names()
-        _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
-        return _all_required_field_names
-
-
-class H2OAzureChatOpenAI(AzureChatOpenAI):
-    @classmethod
-    def _all_required_field_names(cls) -> Set:
-        _all_required_field_names = super(AzureChatOpenAI, cls)._all_required_field_names()
-        _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
-        return _all_required_field_names
-
-
-class H2OAzureOpenAI(AzureOpenAI):
-    @classmethod
-    def _all_required_field_names(cls) -> Set:
-        _all_required_field_names = super(AzureOpenAI, cls)._all_required_field_names()
-        _all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty', 'logit_bias'})
-        return _all_required_field_names
-
-
-class H2OHuggingFacePipeline(HuggingFacePipeline):
-    def _call(
-            self,
-            prompt: str,
-            stop: Optional[List[str]] = None,
-            run_manager: Optional[CallbackManagerForLLMRun] = None,
-            **kwargs: Any,
-    ) -> str:
-        response = self.pipeline(prompt, stop=stop)
-        if self.pipeline.task == "text-generation":
-            # Text generation return includes the starter text.
-            text = response[0]["generated_text"][len(prompt):]
-        elif self.pipeline.task == "text2text-generation":
-            text = response[0]["generated_text"]
-        elif self.pipeline.task == "summarization":
-            text = response[0]["summary_text"]
-        else:
-            raise ValueError(
-                f"Got invalid task {self.pipeline.task}, "
-                f"currently only {VALID_TASKS} are supported"
-            )
-        if stop:
-            # This is a bit hacky, but I can't figure out a better way to enforce
-            # stop tokens when making calls to huggingface_hub.
-            text = enforce_stop_tokens(text, stop)
-        return text
-
-
-def get_llm(use_openai_model=False,
-            model_name=None,
-            model=None,
-            tokenizer=None,
-            inference_server=None,
-            langchain_only_model=None,
-            stream_output=False,
-            async_output=True,
-            num_async=3,
-            do_sample=False,
-            temperature=0.1,
-            top_k=40,
-            top_p=0.7,
-            num_beams=1,
-            max_new_tokens=512,
-            min_new_tokens=1,
-            early_stopping=False,
-            max_time=180,
-            repetition_penalty=1.0,
-            num_return_sequences=1,
-            prompt_type=None,
-            prompt_dict=None,
-            prompter=None,
-            context=None,
-            iinput=None,
-            sanitize_bot_response=False,
-            system_prompt='',
-            visible_models=0,
-            h2ogpt_key=None,
-            min_max_new_tokens=None,
-            n_jobs=None,
-            cli=False,
-            llamacpp_dict=None,
-            verbose=False,
-            ):
-    # currently all but h2oai_pipeline case return prompt + new text, but could change
-    only_new_text = False
-
-    if n_jobs in [None, -1]:
-        n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count() // 2)))
-    if inference_server is None:
-        inference_server = ''
-    if inference_server.startswith('replicate'):
-        model_string = ':'.join(inference_server.split(':')[1:])
-        if 'meta/llama' in model_string:
-            temperature = max(0.01, temperature if do_sample else 0)
-        else:
-            temperature =temperature if do_sample else 0
-        gen_kwargs = dict(temperature=temperature,
-                          seed=1234,
-                          max_length=max_new_tokens,  # langchain
-                          max_new_tokens=max_new_tokens,  # replicate docs
-                          top_p=top_p if do_sample else 1,
-                          top_k=top_k,  # not always supported
-                          repetition_penalty=repetition_penalty)
-        if system_prompt in [None, 'None', 'auto']:
-            if prompter.system_prompt:
-                system_prompt = prompter.system_prompt
-            else:
-                system_prompt = ''
-        if system_prompt:
-            gen_kwargs.update(dict(system_prompt=system_prompt))
-
-        # replicate handles prompting, so avoid get_response() filter
-        prompter.prompt_type = 'plain'
-        if stream_output:
-            callbacks = [StreamingGradioCallbackHandler()]
-            streamer = callbacks[0] if stream_output else None
-            llm = H2OReplicate(
-                streaming=True,
-                callbacks=callbacks,
-                model=model_string,
-                input=gen_kwargs,
-                stop=prompter.stop_sequences,
-                stop_sequences=prompter.stop_sequences,
-                sanitize_bot_response=sanitize_bot_response,
-                prompter=prompter,
-                context=context,
-                iinput=iinput,
-                tokenizer=tokenizer,
-            )
-        else:
-            streamer = None
-            llm = H2OReplicate(
-                model=model_string,
-                input=gen_kwargs,
-                stop=prompter.stop_sequences,
-                stop_sequences=prompter.stop_sequences,
-                sanitize_bot_response=sanitize_bot_response,
-                prompter=prompter,
-                context=context,
-                iinput=iinput,
-                tokenizer=tokenizer,
-            )
-    elif use_openai_model or inference_server.startswith('openai') or inference_server.startswith('vllm'):
-        if use_openai_model and model_name is None:
-            model_name = "gpt-3.5-turbo"
-        # FIXME: Will later import be ignored?  I think so, so should be fine
-        openai, inf_type, deployment_name, base_url, api_version = set_openai(inference_server)
-        kwargs_extra = {}
-        if inf_type == 'openai_chat' or inf_type == 'vllm_chat':
-            cls = H2OChatOpenAI
-            # FIXME: Support context, iinput
-            # if inf_type == 'vllm_chat':
-            #    kwargs_extra.update(dict(tokenizer=tokenizer))
-            openai_api_key = openai.api_key
-        elif inf_type == 'openai_azure_chat':
-            cls = H2OAzureChatOpenAI
-            kwargs_extra.update(dict(openai_api_type='azure'))
-            # FIXME: Support context, iinput
-            if os.getenv('OPENAI_AZURE_KEY') is not None:
-                openai_api_key = os.getenv('OPENAI_AZURE_KEY')
-            else:
-                openai_api_key = openai.api_key
-        elif inf_type == 'openai_azure':
-            cls = H2OAzureOpenAI
-            kwargs_extra.update(dict(openai_api_type='azure'))
-            # FIXME: Support context, iinput
-            if os.getenv('OPENAI_AZURE_KEY') is not None:
-                openai_api_key = os.getenv('OPENAI_AZURE_KEY')
-            else:
-                openai_api_key = openai.api_key
-        else:
-            cls = H2OOpenAI
-            if inf_type == 'vllm':
-                kwargs_extra.update(dict(stop_sequences=prompter.stop_sequences,
-                                         sanitize_bot_response=sanitize_bot_response,
-                                         prompter=prompter,
-                                         context=context,
-                                         iinput=iinput,
-                                         tokenizer=tokenizer,
-                                         openai_api_base=openai.api_base,
-                                         client=None))
-            else:
-                assert inf_type == 'openai' or use_openai_model
-            openai_api_key = openai.api_key
-
-        if deployment_name:
-            kwargs_extra.update(dict(deployment_name=deployment_name))
-        if api_version:
-            kwargs_extra.update(dict(openai_api_version=api_version))
-        elif openai.api_version:
-            kwargs_extra.update(dict(openai_api_version=openai.api_version))
-        elif inf_type in ['openai_azure', 'openai_azure_chat']:
-            kwargs_extra.update(dict(openai_api_version="2023-05-15"))
-        if base_url:
-            kwargs_extra.update(dict(openai_api_base=base_url))
-        else:
-            kwargs_extra.update(dict(openai_api_base=openai.api_base))
-
-        callbacks = [StreamingGradioCallbackHandler()]
-        llm = cls(model_name=model_name,
-                  temperature=temperature if do_sample else 0,
-                  # FIXME: Need to count tokens and reduce max_new_tokens to fit like in generate.py
-                  max_tokens=max_new_tokens,
-                  top_p=top_p if do_sample else 1,
-                  frequency_penalty=0,
-                  presence_penalty=1.07 - repetition_penalty + 0.6,  # so good default
-                  callbacks=callbacks if stream_output else None,
-                  openai_api_key=openai_api_key,
-                  logit_bias=None if inf_type == 'vllm' else {},
-                  max_retries=6,
-                  streaming=stream_output,
-                  **kwargs_extra
-                  )
-        streamer = callbacks[0] if stream_output else None
-        if inf_type in ['openai', 'openai_chat', 'openai_azure', 'openai_azure_chat']:
-            prompt_type = inference_server
-        else:
-            # vllm goes here
-            prompt_type = prompt_type or 'plain'
-    elif inference_server and inference_server.startswith('sagemaker'):
-        callbacks = [StreamingGradioCallbackHandler()]  # FIXME
-        streamer = None
-
-        endpoint_name = ':'.join(inference_server.split(':')[1:2])
-        region_name = ':'.join(inference_server.split(':')[2:])
-
-        from sagemaker import H2OSagemakerEndpoint, ChatContentHandler, BaseContentHandler
-        if inference_server.startswith('sagemaker_chat'):
-            content_handler = ChatContentHandler()
-        else:
-            content_handler = BaseContentHandler()
-        model_kwargs = dict(temperature=temperature if do_sample else 1E-10,
-                            return_full_text=False, top_p=top_p, max_new_tokens=max_new_tokens)
-        llm = H2OSagemakerEndpoint(
-            endpoint_name=endpoint_name,
-            region_name=region_name,
-            aws_access_key_id=os.environ.get('AWS_ACCESS_KEY_ID'),
-            aws_secret_access_key=os.environ.get('AWS_SECRET_ACCESS_KEY'),
-            model_kwargs=model_kwargs,
-            content_handler=content_handler,
-            endpoint_kwargs={'CustomAttributes': 'accept_eula=true'},
-        )
-    elif inference_server:
-        assert inference_server.startswith(
-            'http'), "Malformed inference_server=%s.  Did you add http:// in front?" % inference_server
-
-        from gradio_utils.grclient import GradioClient
-        from text_generation import Client as HFClient
-        if isinstance(model, GradioClient):
-            gr_client = model
-            hf_client = None
-        else:
-            gr_client = None
-            hf_client = model
-            assert isinstance(hf_client, HFClient)
-
-        inference_server, headers = get_hf_server(inference_server)
-
-        # quick sanity check to avoid long timeouts, just see if can reach server
-        requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))
-        callbacks = [StreamingGradioCallbackHandler()]
-
-        if gr_client:
-            async_output = False  # FIXME: not implemented yet
-            chat_client = False
-            llm = GradioInference(
-                inference_server_url=inference_server,
-                return_full_text=False,
-
-                temperature=temperature,
-                top_p=top_p,
-                top_k=top_k,
-                num_beams=num_beams,
-                max_new_tokens=max_new_tokens,
-                min_new_tokens=min_new_tokens,
-                early_stopping=early_stopping,
-                max_time=max_time,
-                repetition_penalty=repetition_penalty,
-                num_return_sequences=num_return_sequences,
-                do_sample=do_sample,
-                chat_client=chat_client,
-
-                callbacks=callbacks if stream_output else None,
-                stream_output=stream_output,
-                prompter=prompter,
-                context=context,
-                iinput=iinput,
-                client=gr_client,
-                sanitize_bot_response=sanitize_bot_response,
-                tokenizer=tokenizer,
-                system_prompt=system_prompt,
-                visible_models=visible_models,
-                h2ogpt_key=h2ogpt_key,
-                min_max_new_tokens=min_max_new_tokens,
-            )
-        elif hf_client:
-            # no need to pass original client, no state and fast, so can use same validate_environment from base class
-            async_sem = asyncio.Semaphore(num_async) if async_output else NullContext()
-            llm = H2OHuggingFaceTextGenInference(
-                inference_server_url=inference_server,
-                do_sample=do_sample,
-                max_new_tokens=max_new_tokens,
-                repetition_penalty=repetition_penalty,
-                return_full_text=False,  # this only controls internal behavior, still returns processed text
-                seed=SEED,
-
-                stop_sequences=prompter.stop_sequences,
-                temperature=temperature,
-                top_k=top_k,
-                top_p=top_p,
-                # typical_p=top_p,
-                callbacks=callbacks if stream_output else None,
-                stream_output=stream_output,
-                prompter=prompter,
-                context=context,
-                iinput=iinput,
-                tokenizer=tokenizer,
-                timeout=max_time,
-                sanitize_bot_response=sanitize_bot_response,
-                async_sem=async_sem,
-            )
-        else:
-            raise RuntimeError("No defined client")
-        streamer = callbacks[0] if stream_output else None
-    elif model_name in non_hf_types:
-        async_output = False  # FIXME: not implemented yet
-        assert langchain_only_model
-        if model_name == 'llama':
-            callbacks = [StreamingGradioCallbackHandler()]
-            streamer = callbacks[0] if stream_output else None
-        else:
-            # stream_output = False
-            # doesn't stream properly as generator, but at least
-            callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
-            streamer = None
-        if prompter:
-            prompt_type = prompter.prompt_type
-        else:
-            prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output)
-            pass  # assume inputted prompt_type is correct
-        from gpt4all_llm import get_llm_gpt4all
-        max_max_tokens = tokenizer.model_max_length
-        llm = get_llm_gpt4all(model_name,
-                              model=model,
-                              max_new_tokens=max_new_tokens,
-                              temperature=temperature,
-                              repetition_penalty=repetition_penalty,
-                              top_k=top_k,
-                              top_p=top_p,
-                              callbacks=callbacks,
-                              n_jobs=n_jobs,
-                              verbose=verbose,
-                              streaming=stream_output,
-                              prompter=prompter,
-                              context=context,
-                              iinput=iinput,
-                              max_seq_len=max_max_tokens,
-                              llamacpp_dict=llamacpp_dict,
-                              )
-    elif hasattr(model, 'is_exlama') and model.is_exlama():
-        async_output = False  # FIXME: not implemented yet
-        assert langchain_only_model
-        callbacks = [StreamingGradioCallbackHandler()]
-        streamer = callbacks[0] if stream_output else None
-        max_max_tokens = tokenizer.model_max_length
-
-        from src.llm_exllama import Exllama
-        llm = Exllama(streaming=stream_output,
-                      model_path=None,
-                      model=model,
-                      lora_path=None,
-                      temperature=temperature,
-                      top_k=top_k,
-                      top_p=top_p,
-                      typical=.7,
-                      beams=1,
-                      # beam_length = 40,
-                      stop_sequences=prompter.stop_sequences,
-                      callbacks=callbacks,
-                      verbose=verbose,
-                      max_seq_len=max_max_tokens,
-                      fused_attn=False,
-                      # alpha_value = 1.0, #For use with any models
-                      # compress_pos_emb = 4.0, #For use with superhot
-                      # set_auto_map = "3, 2" #Gpu split, this will split 3gigs/2gigs
-                      prompter=prompter,
-                      context=context,
-                      iinput=iinput,
-                      )
-    else:
-        async_output = False  # FIXME: not implemented yet
-        if model is None:
-            # only used if didn't pass model in
-            assert tokenizer is None
-            prompt_type = 'human_bot'
-            if model_name is None:
-                model_name = 'h2oai/h2ogpt-oasst1-512-12b'
-                # model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
-                # model_name = 'h2oai/h2ogpt-oasst1-512-20b'
-            inference_server = ''
-            model, tokenizer, device = get_model(load_8bit=True, base_model=model_name,
-                                                 inference_server=inference_server, gpu_id=0)
-
-        max_max_tokens = tokenizer.model_max_length
-        only_new_text = True
-        gen_kwargs = dict(do_sample=do_sample,
-                          num_beams=num_beams,
-                          max_new_tokens=max_new_tokens,
-                          min_new_tokens=min_new_tokens,
-                          early_stopping=early_stopping,
-                          max_time=max_time,
-                          repetition_penalty=repetition_penalty,
-                          num_return_sequences=num_return_sequences,
-                          return_full_text=not only_new_text,
-                          handle_long_generation=None)
-        if do_sample:
-            gen_kwargs.update(dict(temperature=temperature,
-                                   top_k=top_k,
-                                   top_p=top_p))
-            assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0
-        else:
-            assert len(set(gen_hyper0).difference(gen_kwargs.keys())) == 0
-
-        if stream_output:
-            skip_prompt = only_new_text
-            from gen import H2OTextIteratorStreamer
-            decoder_kwargs = {}
-            streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
-            gen_kwargs.update(dict(streamer=streamer))
-        else:
-            streamer = None
-
-        from h2oai_pipeline import H2OTextGenerationPipeline
-        pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
-                                         prompter=prompter,
-                                         context=context,
-                                         iinput=iinput,
-                                         prompt_type=prompt_type,
-                                         prompt_dict=prompt_dict,
-                                         sanitize_bot_response=sanitize_bot_response,
-                                         chat=False, stream_output=stream_output,
-                                         tokenizer=tokenizer,
-                                         # leave some room for 1 paragraph, even if min_new_tokens=0
-                                         max_input_tokens=max_max_tokens - max(min_new_tokens, 256),
-                                         base_model=model_name,
-                                         **gen_kwargs)
-        # pipe.task = "text-generation"
-        # below makes it listen only to our prompt removal,
-        # not built in prompt removal that is less general and not specific for our model
-        pipe.task = "text2text-generation"
-
-        llm = H2OHuggingFacePipeline(pipeline=pipe)
-    return llm, model_name, streamer, prompt_type, async_output, only_new_text
-
-
-def get_device_dtype():
-    # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
-    import torch
-    n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
-    device = 'cpu' if n_gpus == 0 else 'cuda'
-    # from utils import NullContext
-    # context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
-    context_class = torch.device
-    torch_dtype = torch.float16 if device == 'cuda' else torch.float32
-    return device, torch_dtype, context_class
-
-
-def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
-    """
-    Get wikipedia data from online
-    :param title:
-    :param first_paragraph_only:
-    :param text_limit:
-    :param take_head:
-    :return:
-    """
-    filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
-    url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
-    if first_paragraph_only:
-        url += "&exintro=1"
-    import json
-    if not os.path.isfile(filename):
-        data = requests.get(url).json()
-        json.dump(data, open(filename, 'wt'))
-    else:
-        data = json.load(open(filename, "rt"))
-    page_content = list(data["query"]["pages"].values())[0]["extract"]
-    if take_head is not None and text_limit is not None:
-        page_content = page_content[:text_limit] if take_head else page_content[-text_limit:]
-    title_url = str(title).replace(' ', '_')
-    return Document(
-        page_content=str(page_content),
-        metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
-    )
-
-
-def get_wiki_sources(first_para=True, text_limit=None):
-    """
-    Get specific named sources from wikipedia
-    :param first_para:
-    :param text_limit:
-    :return:
-    """
-    default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
-    wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
-    return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]
-
-
-def get_github_docs(repo_owner, repo_name):
-    """
-    Access github from specific repo
-    :param repo_owner:
-    :param repo_name:
-    :return:
-    """
-    with tempfile.TemporaryDirectory() as d:
-        subprocess.check_call(
-            f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
-            cwd=d,
-            shell=True,
-        )
-        git_sha = (
-            subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
-            .decode("utf-8")
-            .strip()
-        )
-        repo_path = pathlib.Path(d)
-        markdown_files = list(repo_path.glob("*/*.md")) + list(
-            repo_path.glob("*/*.mdx")
-        )
-        for markdown_file in markdown_files:
-            with open(markdown_file, "r") as f:
-                relative_path = markdown_file.relative_to(repo_path)
-                github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
-                yield Document(page_content=str(f.read()), metadata={"source": github_url})
-
-
-def get_dai_pickle(dest="."):
-    from huggingface_hub import hf_hub_download
-    # True for case when locally already logged in with correct token, so don't have to set key
-    token = os.getenv('HUGGING_FACE_HUB_TOKEN', True)
-    path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
-    shutil.copy(path_to_zip_file, dest)
-
-
-def get_dai_docs(from_hf=False, get_pickle=True):
-    """
-    Consume DAI documentation, or consume from public pickle
-    :param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
-    :param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
-    :return:
-    """
-    import pickle
-
-    if get_pickle:
-        get_dai_pickle()
-
-    dai_store = 'dai_docs.pickle'
-    dst = "working_dir_docs"
-    if not os.path.isfile(dai_store):
-        from create_data import setup_dai_docs
-        dst = setup_dai_docs(dst=dst, from_hf=from_hf)
-
-        import glob
-        files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))
-
-        basedir = os.path.abspath(os.getcwd())
-        from create_data import rst_to_outputs
-        new_outputs = rst_to_outputs(files)
-        os.chdir(basedir)
-
-        pickle.dump(new_outputs, open(dai_store, 'wb'))
-    else:
-        new_outputs = pickle.load(open(dai_store, 'rb'))
-
-    sources = []
-    for line, file in new_outputs:
-        # gradio requires any linked file to be with app.py
-        sym_src = os.path.abspath(os.path.join(dst, file))
-        sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
-        if os.path.lexists(sym_dst):
-            os.remove(sym_dst)
-        os.symlink(sym_src, sym_dst)
-        itm = Document(page_content=str(line), metadata={"source": file})
-        # NOTE: yield has issues when going into db, loses metadata
-        # yield itm
-        sources.append(itm)
-    return sources
-
-
-def get_supported_types():
-    non_image_types0 = ["pdf", "txt", "csv", "toml", "py", "rst", "xml", "rtf",
-                        "md",
-                        "html", "mhtml", "htm",
-                        "enex", "eml", "epub", "odt", "pptx", "ppt",
-                        "zip",
-                        "gz",
-                        "gzip",
-                        "urls",
-                        ]
-    # "msg",  GPL3
-
-    video_types0 = ['WEBM',
-                    'MPG', 'MP2', 'MPEG', 'MPE', '.PV',
-                    'OGG',
-                    'MP4', 'M4P', 'M4V',
-                    'AVI', 'WMV',
-                    'MOV', 'QT',
-                    'FLV', 'SWF',
-                    'AVCHD']
-    video_types0 = [x.lower() for x in video_types0]
-    if have_pillow:
-        from PIL import Image
-        exts = Image.registered_extensions()
-        image_types0 = {ex for ex, f in exts.items() if f in Image.OPEN if ex not in video_types0 + non_image_types0}
-        image_types0 = sorted(image_types0)
-        image_types0 = [x[1:] if x.startswith('.') else x for x in image_types0]
-    else:
-        image_types0 = []
-    return non_image_types0, image_types0, video_types0
-
-
-non_image_types, image_types, video_types = get_supported_types()
-set_image_types = set(image_types)
-
-if have_libreoffice or True:
-    # or True so it tries to load, e.g. on MAC/Windows, even if don't have libreoffice since works without that
-    non_image_types.extend(["docx", "doc", "xls", "xlsx"])
-if have_jq:
-    non_image_types.extend(["json", "jsonl"])
-
-file_types = non_image_types + image_types
-
-
-def try_as_html(file):
-    # try treating as html as occurs when scraping websites
-    from bs4 import BeautifulSoup
-    with open(file, "rt") as f:
-        try:
-            is_html = bool(BeautifulSoup(f.read(), "html.parser").find())
-        except:  # FIXME
-            is_html = False
-    if is_html:
-        file_url = 'file://' + file
-        doc1 = UnstructuredURLLoader(urls=[file_url]).load()
-        doc1 = [x for x in doc1 if x.page_content]
-    else:
-        doc1 = []
-    return doc1
-
-
-def json_metadata_func(record: dict, metadata: dict) -> dict:
-    # Define the metadata extraction function.
-
-    if isinstance(record, dict):
-        metadata["sender_name"] = record.get("sender_name")
-        metadata["timestamp_ms"] = record.get("timestamp_ms")
-
-    if "source" in metadata:
-        metadata["source_json"] = metadata['source']
-    if "seq_num" in metadata:
-        metadata["seq_num_json"] = metadata['seq_num']
-
-    return metadata
-
-
-def file_to_doc(file,
-                filei=0,
-                base_path=None, verbose=False, fail_any_exception=False,
-                chunk=True, chunk_size=512, n_jobs=-1,
-                is_url=False, is_txt=False,
-
-                # urls
-                use_unstructured=True,
-                use_playwright=False,
-                use_selenium=False,
-
-                # pdfs
-                use_pymupdf='auto',
-                use_unstructured_pdf='auto',
-                use_pypdf='auto',
-                enable_pdf_ocr='auto',
-                try_pdf_as_html='auto',
-                enable_pdf_doctr='auto',
-
-                # images
-                enable_ocr=False,
-                enable_doctr=False,
-                enable_pix2struct=False,
-                enable_captions=True,
-                captions_model=None,
-                model_loaders=None,
-
-                # json
-                jq_schema='.[]',
-
-                headsize=50,  # see also H2OSerpAPIWrapper
-                db_type=None,
-                selected_file_types=None):
-    assert isinstance(model_loaders, dict)
-    if selected_file_types is not None:
-        set_image_types1 = set_image_types.intersection(set(selected_file_types))
-    else:
-        set_image_types1 = set_image_types
-
-    assert db_type is not None
-    chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
-    add_meta = functools.partial(_add_meta, headsize=headsize, filei=filei)
-    # FIXME: if zip, file index order will not be correct if other files involved
-    path_to_docs_func = functools.partial(path_to_docs,
-                                          verbose=verbose,
-                                          fail_any_exception=fail_any_exception,
-                                          n_jobs=n_jobs,
-                                          chunk=chunk, chunk_size=chunk_size,
-                                          # url=file if is_url else None,
-                                          # text=file if is_txt else None,
-
-                                          # urls
-                                          use_unstructured=use_unstructured,
-                                          use_playwright=use_playwright,
-                                          use_selenium=use_selenium,
-
-                                          # pdfs
-                                          use_pymupdf=use_pymupdf,
-                                          use_unstructured_pdf=use_unstructured_pdf,
-                                          use_pypdf=use_pypdf,
-                                          enable_pdf_ocr=enable_pdf_ocr,
-                                          enable_pdf_doctr=enable_pdf_doctr,
-                                          try_pdf_as_html=try_pdf_as_html,
-
-                                          # images
-                                          enable_ocr=enable_ocr,
-                                          enable_doctr=enable_doctr,
-                                          enable_pix2struct=enable_pix2struct,
-                                          enable_captions=enable_captions,
-                                          captions_model=captions_model,
-
-                                          caption_loader=model_loaders['caption'],
-                                          doctr_loader=model_loaders['doctr'],
-                                          pix2struct_loader=model_loaders['pix2struct'],
-
-                                          # json
-                                          jq_schema=jq_schema,
-
-                                          db_type=db_type,
-                                          )
-
-    if file is None:
-        if fail_any_exception:
-            raise RuntimeError("Unexpected None file")
-        else:
-            return []
-    doc1 = []  # in case no support, or disabled support
-    if base_path is None and not is_txt and not is_url:
-        # then assume want to persist but don't care which path used
-        # can't be in base_path
-        dir_name = os.path.dirname(file)
-        base_name = os.path.basename(file)
-        # if from gradio, will have its own temp uuid too, but that's ok
-        base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
-        base_path = os.path.join(dir_name, base_name)
-    if is_url:
-        file = file.strip()  # in case accidental spaces in front or at end
-        file_lower = file.lower()
-        case1 = file_lower.startswith('arxiv:') and len(file_lower.split('arxiv:')) == 2
-        case2 = file_lower.startswith('https://arxiv.org/abs') and len(file_lower.split('https://arxiv.org/abs')) == 2
-        case3 = file_lower.startswith('http://arxiv.org/abs') and len(file_lower.split('http://arxiv.org/abs')) == 2
-        case4 = file_lower.startswith('arxiv.org/abs/') and len(file_lower.split('arxiv.org/abs/')) == 2
-        if case1 or case2 or case3 or case4:
-            if case1:
-                query = file.lower().split('arxiv:')[1].strip()
-            elif case2:
-                query = file.lower().split('https://arxiv.org/abs/')[1].strip()
-            elif case2:
-                query = file.lower().split('http://arxiv.org/abs/')[1].strip()
-            elif case3:
-                query = file.lower().split('arxiv.org/abs/')[1].strip()
-            else:
-                raise RuntimeError("Unexpected arxiv error for %s" % file)
-            if have_arxiv:
-                trials = 3
-                docs1 = []
-                for trial in range(trials):
-                    try:
-                        docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
-                        break
-                    except urllib.error.URLError:
-                        pass
-                if not docs1:
-                    print("Failed to get arxiv %s" % query, flush=True)
-                # ensure string, sometimes None
-                [[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
-                query_url = f"https://arxiv.org/abs/{query}"
-                [x.metadata.update(
-                    dict(source=x.metadata.get('entry_id', query_url), query=query_url,
-                         input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
-                    docs1]
-            else:
-                docs1 = []
-        else:
-            if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")):
-                file = 'http://' + file
-            docs1 = []
-            do_unstructured = only_unstructured_urls or use_unstructured
-            if only_selenium or only_playwright:
-                do_unstructured = False
-            do_playwright = have_playwright and (use_playwright or only_playwright)
-            if only_unstructured_urls or only_selenium:
-                do_playwright = False
-            do_selenium = have_selenium and (use_selenium or only_selenium)
-            if only_unstructured_urls or only_playwright:
-                do_selenium = False
-            if do_unstructured or use_unstructured:
-                docs1a = UnstructuredURLLoader(urls=[file]).load()
-                docs1a = [x for x in docs1a if x.page_content]
-                add_parser(docs1a, 'UnstructuredURLLoader')
-                docs1.extend(docs1a)
-            if len(docs1) == 0 and have_playwright or do_playwright:
-                # then something went wrong, try another loader:
-                from langchain.document_loaders import PlaywrightURLLoader
-                docs1a = asyncio.run(PlaywrightURLLoader(urls=[file]).aload())
-                # docs1 = PlaywrightURLLoader(urls=[file]).load()
-                docs1a = [x for x in docs1a if x.page_content]
-                add_parser(docs1a, 'PlaywrightURLLoader')
-                docs1.extend(docs1a)
-            if len(docs1) == 0 and have_selenium or do_selenium:
-                # then something went wrong, try another loader:
-                # but requires Chrome binary, else get: selenium.common.exceptions.WebDriverException:
-                # Message: unknown error: cannot find Chrome binary
-                from langchain.document_loaders import SeleniumURLLoader
-                from selenium.common.exceptions import WebDriverException
-                try:
-                    docs1a = SeleniumURLLoader(urls=[file]).load()
-                    docs1a = [x for x in docs1a if x.page_content]
-                    add_parser(docs1a, 'SeleniumURLLoader')
-                    docs1.extend(docs1a)
-                except WebDriverException as e:
-                    print("No web driver: %s" % str(e), flush=True)
-            [x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
-        add_meta(docs1, file, parser="is_url")
-        docs1 = clean_doc(docs1)
-        doc1 = chunk_sources(docs1)
-    elif is_txt:
-        base_path = "user_paste"
-        base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
-        source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
-        with open(source_file, "wt") as f:
-            f.write(file)
-        metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
-        doc1 = Document(page_content=str(file), metadata=metadata)
-        add_meta(doc1, file, parser="f.write")
-        # Bit odd to change if was original text
-        # doc1 = clean_doc(doc1)
-    elif file.lower().endswith('.html') or file.lower().endswith('.mhtml') or file.lower().endswith('.htm'):
-        docs1 = UnstructuredHTMLLoader(file_path=file).load()
-        add_meta(docs1, file, parser='UnstructuredHTMLLoader')
-        docs1 = clean_doc(docs1)
-        doc1 = chunk_sources(docs1, language=Language.HTML)
-    elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and (have_libreoffice or True):
-        docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
-        add_meta(docs1, file, parser='UnstructuredWordDocumentLoader')
-        doc1 = chunk_sources(docs1)
-    elif (file.lower().endswith('.xlsx') or file.lower().endswith('.xls')) and (have_libreoffice or True):
-        docs1 = UnstructuredExcelLoader(file_path=file).load()
-        add_meta(docs1, file, parser='UnstructuredExcelLoader')
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('.odt'):
-        docs1 = UnstructuredODTLoader(file_path=file).load()
-        add_meta(docs1, file, parser='UnstructuredODTLoader')
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
-        docs1 = UnstructuredPowerPointLoader(file_path=file).load()
-        add_meta(docs1, file, parser='UnstructuredPowerPointLoader')
-        docs1 = clean_doc(docs1)
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('.txt'):
-        # use UnstructuredFileLoader ?
-        docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
-        # makes just one, but big one
-        doc1 = chunk_sources(docs1)
-        # Bit odd to change if was original text
-        # doc1 = clean_doc(doc1)
-        add_meta(doc1, file, parser='TextLoader')
-    elif file.lower().endswith('.rtf'):
-        docs1 = UnstructuredRTFLoader(file).load()
-        add_meta(docs1, file, parser='UnstructuredRTFLoader')
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('.md'):
-        docs1 = UnstructuredMarkdownLoader(file).load()
-        add_meta(docs1, file, parser='UnstructuredMarkdownLoader')
-        docs1 = clean_doc(docs1)
-        doc1 = chunk_sources(docs1, language=Language.MARKDOWN)
-    elif file.lower().endswith('.enex'):
-        docs1 = EverNoteLoader(file).load()
-        add_meta(doc1, file, parser='EverNoteLoader')
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('.epub'):
-        docs1 = UnstructuredEPubLoader(file).load()
-        add_meta(docs1, file, parser='UnstructuredEPubLoader')
-        doc1 = chunk_sources(docs1)
-    elif any(file.lower().endswith(x) for x in set_image_types1):
-        docs1 = []
-        if verbose:
-            print("BEGIN: Tesseract", flush=True)
-        if have_tesseract and enable_ocr:
-            # OCR, somewhat works, but not great
-            docs1a = UnstructuredImageLoader(file, strategy='ocr_only').load()
-            # docs1a = UnstructuredImageLoader(file, strategy='hi_res').load()
-            docs1a = [x for x in docs1a if x.page_content]
-            add_meta(docs1a, file, parser='UnstructuredImageLoader')
-            docs1.extend(docs1a)
-        if verbose:
-            print("END: Tesseract", flush=True)
-        if have_doctr and enable_doctr:
-            if verbose:
-                print("BEGIN: DocTR", flush=True)
-            if model_loaders['doctr'] is not None and not isinstance(model_loaders['doctr'], (str, bool)):
-                if verbose:
-                    print("Reuse DocTR", flush=True)
-                model_loaders['doctr'].load_model()
-            else:
-                if verbose:
-                    print("Fresh DocTR", flush=True)
-                from image_doctr import H2OOCRLoader
-                model_loaders['doctr'] = H2OOCRLoader()
-            model_loaders['doctr'].set_document_paths([file])
-            docs1c = model_loaders['doctr'].load()
-            docs1c = [x for x in docs1c if x.page_content]
-            add_meta(docs1c, file, parser='H2OOCRLoader: %s' % 'DocTR')
-            # caption didn't set source, so fix-up meta
-            for doci in docs1c:
-                doci.metadata['source'] = doci.metadata.get('document_path', file)
-                doci.metadata['hashid'] = hash_file(doci.metadata['source'])
-            docs1.extend(docs1c)
-            if verbose:
-                print("END: DocTR", flush=True)
-        if enable_captions:
-            # BLIP
-            if verbose:
-                print("BEGIN: BLIP", flush=True)
-            if model_loaders['caption'] is not None and not isinstance(model_loaders['caption'], (str, bool)):
-                # assumes didn't fork into this process with joblib, else can deadlock
-                if verbose:
-                    print("Reuse BLIP", flush=True)
-                model_loaders['caption'].load_model()
-            else:
-                if verbose:
-                    print("Fresh BLIP", flush=True)
-                from image_captions import H2OImageCaptionLoader
-                model_loaders['caption'] = H2OImageCaptionLoader(caption_gpu=model_loaders['caption'] == 'gpu',
-                                                                 blip_model=captions_model,
-                                                                 blip_processor=captions_model)
-            model_loaders['caption'].set_image_paths([file])
-            docs1c = model_loaders['caption'].load()
-            docs1c = [x for x in docs1c if x.page_content]
-            add_meta(docs1c, file, parser='H2OImageCaptionLoader: %s' % captions_model)
-            # caption didn't set source, so fix-up meta
-            for doci in docs1c:
-                doci.metadata['source'] = doci.metadata.get('image_path', file)
-                doci.metadata['hashid'] = hash_file(doci.metadata['source'])
-            docs1.extend(docs1c)
-
-            if verbose:
-                print("END: BLIP", flush=True)
-        if enable_pix2struct:
-            # BLIP
-            if verbose:
-                print("BEGIN: Pix2Struct", flush=True)
-            if model_loaders['pix2struct'] is not None and not isinstance(model_loaders['pix2struct'], (str, bool)):
-                if verbose:
-                    print("Reuse pix2struct", flush=True)
-                model_loaders['pix2struct'].load_model()
-            else:
-                if verbose:
-                    print("Fresh pix2struct", flush=True)
-                from image_pix2struct import H2OPix2StructLoader
-                model_loaders['pix2struct'] = H2OPix2StructLoader()
-            model_loaders['pix2struct'].set_image_paths([file])
-            docs1c = model_loaders['pix2struct'].load()
-            docs1c = [x for x in docs1c if x.page_content]
-            add_meta(docs1c, file, parser='H2OPix2StructLoader: %s' % model_loaders['pix2struct'])
-            # caption didn't set source, so fix-up meta
-            for doci in docs1c:
-                doci.metadata['source'] = doci.metadata.get('image_path', file)
-                doci.metadata['hashid'] = hash_file(doci.metadata['source'])
-            docs1.extend(docs1c)
-            if verbose:
-                print("END: Pix2Struct", flush=True)
-        doc1 = chunk_sources(docs1)
-    elif file.lower().endswith('.msg'):
-        raise RuntimeError("Not supported, GPL3 license")
-        # docs1 = OutlookMessageLoader(file).load()
-        # docs1[0].metadata['source'] = file
-    elif file.lower().endswith('.eml'):
-        try:
-            docs1 = UnstructuredEmailLoader(file).load()
-            add_meta(docs1, file, parser='UnstructuredEmailLoader')
-            doc1 = chunk_sources(docs1)
-        except ValueError as e:
-            if 'text/html content not found in email' in str(e):
-                pass
-            else:
-                raise
-        doc1 = [x for x in doc1 if x.page_content]
-        if len(doc1) == 0:
-            # e.g. plain/text dict key exists, but not
-            # doc1 = TextLoader(file, encoding="utf8").load()
-            docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
-            docs1 = [x for x in docs1 if x.page_content]
-            add_meta(docs1, file, parser='UnstructuredEmailLoader text/plain')
-            doc1 = chunk_sources(docs1)
-    # elif file.lower().endswith('.gcsdir'):
-    #    doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
-    # elif file.lower().endswith('.gcsfile'):
-    # doc1 = GCSFileLoader(project_name, bucket, blob).load()
-    elif file.lower().endswith('.rst'):
-        with open(file, "r") as f:
-            doc1 = Document(page_content=str(f.read()), metadata={"source": file})
-        add_meta(doc1, file, parser='f.read()')
-        doc1 = chunk_sources(doc1, language=Language.RST)
-    elif file.lower().endswith('.json'):
-        # 10k rows, 100 columns-like parts 4 bytes each
-        JSON_SIZE_LIMIT = int(os.getenv('JSON_SIZE_LIMIT', str(10 * 10 * 1024 * 10 * 4)))
-        if os.path.getsize(file) > JSON_SIZE_LIMIT:
-            raise ValueError(
-                "JSON file sizes > %s not supported for naive parsing and embedding, requires Agents enabled" % JSON_SIZE_LIMIT)
-        loader = JSONLoader(
-            file_path=file,
-            # jq_schema='.messages[].content',
-            jq_schema=jq_schema,
-            text_content=False,
-            metadata_func=json_metadata_func)
-        doc1 = loader.load()
-        add_meta(doc1, file, parser='JSONLoader: %s' % jq_schema)
-        fix_json_meta(doc1)
-    elif file.lower().endswith('.jsonl'):
-        loader = JSONLoader(
-            file_path=file,
-            # jq_schema='.messages[].content',
-            jq_schema=jq_schema,
-            json_lines=True,
-            text_content=False,
-            metadata_func=json_metadata_func)
-        doc1 = loader.load()
-        add_meta(doc1, file, parser='JSONLoader: %s' % jq_schema)
-        fix_json_meta(doc1)
-    elif file.lower().endswith('.pdf'):
-        # migration
-        if isinstance(use_pymupdf, bool):
-            if use_pymupdf == False:
-                use_pymupdf = 'off'
-            if use_pymupdf == True:
-                use_pymupdf = 'on'
-        if isinstance(use_unstructured_pdf, bool):
-            if use_unstructured_pdf == False:
-                use_unstructured_pdf = 'off'
-            if use_unstructured_pdf == True:
-                use_unstructured_pdf = 'on'
-        if isinstance(use_pypdf, bool):
-            if use_pypdf == False:
-                use_pypdf = 'off'
-            if use_pypdf == True:
-                use_pypdf = 'on'
-        if isinstance(enable_pdf_ocr, bool):
-            if enable_pdf_ocr == False:
-                enable_pdf_ocr = 'off'
-            if enable_pdf_ocr == True:
-                enable_pdf_ocr = 'on'
-        if isinstance(try_pdf_as_html, bool):
-            if try_pdf_as_html == False:
-                try_pdf_as_html = 'off'
-            if try_pdf_as_html == True:
-                try_pdf_as_html = 'on'
-
-        doc1 = []
-        tried_others = False
-        handled = False
-        did_pymupdf = False
-        did_unstructured = False
-        e = None
-        if have_pymupdf and (len(doc1) == 0 and use_pymupdf == 'auto' or use_pymupdf == 'on'):
-            # GPL, only use if installed
-            from langchain.document_loaders import PyMuPDFLoader
-            # load() still chunks by pages, but every page has title at start to help
-            try:
-                doc1a = PyMuPDFLoader(file).load()
-                did_pymupdf = True
-            except BaseException as e0:
-                doc1a = []
-                print("PyMuPDFLoader: %s" % str(e0), flush=True)
-                e = e0
-            # remove empty documents
-            handled |= len(doc1a) > 0
-            doc1a = [x for x in doc1a if x.page_content]
-            doc1a = clean_doc(doc1a)
-            add_parser(doc1a, 'PyMuPDFLoader')
-            doc1.extend(doc1a)
-        if len(doc1) == 0 and use_unstructured_pdf == 'auto' or use_unstructured_pdf == 'on':
-            tried_others = True
-            try:
-                doc1a = UnstructuredPDFLoader(file).load()
-                did_unstructured = True
-            except BaseException as e0:
-                doc1a = []
-                print("UnstructuredPDFLoader: %s" % str(e0), flush=True)
-                e = e0
-            handled |= len(doc1a) > 0
-            # remove empty documents
-            doc1a = [x for x in doc1a if x.page_content]
-            add_parser(doc1a, 'UnstructuredPDFLoader')
-            # seems to not need cleaning in most cases
-            doc1.extend(doc1a)
-        if len(doc1) == 0 and use_pypdf == 'auto' or use_pypdf == 'on':
-            tried_others = True
-            # open-source fallback
-            # load() still chunks by pages, but every page has title at start to help
-            try:
-                doc1a = PyPDFLoader(file).load()
-            except BaseException as e0:
-                doc1a = []
-                print("PyPDFLoader: %s" % str(e0), flush=True)
-                e = e0
-            handled |= len(doc1a) > 0
-            # remove empty documents
-            doc1a = [x for x in doc1a if x.page_content]
-            doc1a = clean_doc(doc1a)
-            add_parser(doc1a, 'PyPDFLoader')
-            doc1.extend(doc1a)
-        if not did_pymupdf and ((have_pymupdf and len(doc1) == 0) and tried_others):
-            # try again in case only others used, but only if didn't already try (2nd part of and)
-            # GPL, only use if installed
-            from langchain.document_loaders import PyMuPDFLoader
-            # load() still chunks by pages, but every page has title at start to help
-            try:
-                doc1a = PyMuPDFLoader(file).load()
-            except BaseException as e0:
-                doc1a = []
-                print("PyMuPDFLoader: %s" % str(e0), flush=True)
-                e = e0
-            handled |= len(doc1a) > 0
-            # remove empty documents
-            doc1a = [x for x in doc1a if x.page_content]
-            doc1a = clean_doc(doc1a)
-            add_parser(doc1a, 'PyMuPDFLoader2')
-            doc1.extend(doc1a)
-        did_pdf_ocr = False
-        if len(doc1) == 0 and (enable_pdf_ocr == 'auto' and enable_pdf_doctr != 'on') or enable_pdf_ocr == 'on':
-            did_pdf_ocr = True
-            # no did_unstructured condition here because here we do OCR, and before we did not
-            # try OCR in end since slowest, but works on pure image pages well
-            doc1a = UnstructuredPDFLoader(file, strategy='ocr_only').load()
-            handled |= len(doc1a) > 0
-            # remove empty documents
-            doc1a = [x for x in doc1a if x.page_content]
-            add_parser(doc1a, 'UnstructuredPDFLoader ocr_only')
-            # seems to not need cleaning in most cases
-            doc1.extend(doc1a)
-        # Some PDFs return nothing or junk from PDFMinerLoader
-        if len(doc1) == 0 and enable_pdf_doctr == 'auto' or enable_pdf_doctr == 'on':
-            if verbose:
-                print("BEGIN: DocTR", flush=True)
-            if model_loaders['doctr'] is not None and not isinstance(model_loaders['doctr'], (str, bool)):
-                model_loaders['doctr'].load_model()
-            else:
-                from image_doctr import H2OOCRLoader
-                model_loaders['doctr'] = H2OOCRLoader()
-            model_loaders['doctr'].set_document_paths([file])
-            doc1a = model_loaders['doctr'].load()
-            doc1a = [x for x in doc1a if x.page_content]
-            add_meta(doc1a, file, parser='H2OOCRLoader: %s' % 'DocTR')
-            handled |= len(doc1a) > 0
-            # caption didn't set source, so fix-up meta
-            for doci in doc1a:
-                doci.metadata['source'] = doci.metadata.get('document_path', file)
-                doci.metadata['hashid'] = hash_file(doci.metadata['source'])
-            doc1.extend(doc1a)
-            if verbose:
-                print("END: DocTR", flush=True)
-        if try_pdf_as_html in ['auto', 'on']:
-            doc1a = try_as_html(file)
-            add_parser(doc1a, 'try_as_html')
-            doc1.extend(doc1a)
-
-        if len(doc1) == 0:
-            # if literally nothing, show failed to parse so user knows, since unlikely nothing in PDF at all.
-            if handled:
-                raise ValueError("%s had no valid text, but meta data was parsed" % file)
-            else:
-                raise ValueError("%s had no valid text and no meta data was parsed: %s" % (file, str(e)))
-        add_meta(doc1, file, parser='pdf')
-        doc1 = chunk_sources(doc1)
-    elif file.lower().endswith('.csv'):
-        CSV_SIZE_LIMIT = int(os.getenv('CSV_SIZE_LIMIT', str(10 * 1024 * 10 * 4)))
-        if os.path.getsize(file) > CSV_SIZE_LIMIT:
-            raise ValueError(
-                "CSV file sizes > %s not supported for naive parsing and embedding, requires Agents enabled" % CSV_SIZE_LIMIT)
-        doc1 = CSVLoader(file).load()
-        add_meta(doc1, file, parser='CSVLoader')
-        if isinstance(doc1, list):
-            # each row is a Document, identify
-            [x.metadata.update(dict(chunk_id=chunk_id)) for chunk_id, x in enumerate(doc1)]
-            if db_type in ['chroma', 'chroma_old']:
-                # then separate summarize list
-                sdoc1 = clone_documents(doc1)
-                [x.metadata.update(dict(chunk_id=-1)) for chunk_id, x in enumerate(sdoc1)]
-                doc1 = sdoc1 + doc1
-    elif file.lower().endswith('.py'):
-        doc1 = PythonLoader(file).load()
-        add_meta(doc1, file, parser='PythonLoader')
-        doc1 = chunk_sources(doc1, language=Language.PYTHON)
-    elif file.lower().endswith('.toml'):
-        doc1 = TomlLoader(file).load()
-        add_meta(doc1, file, parser='TomlLoader')
-        doc1 = chunk_sources(doc1)
-    elif file.lower().endswith('.xml'):
-        from langchain.document_loaders import UnstructuredXMLLoader
-        loader = UnstructuredXMLLoader(file_path=file)
-        doc1 = loader.load()
-        add_meta(doc1, file, parser='UnstructuredXMLLoader')
-    elif file.lower().endswith('.urls'):
-        with open(file, "r") as f:
-            urls = f.readlines()
-            # recurse
-            doc1 = path_to_docs_func(None, url=urls)
-    elif file.lower().endswith('.zip'):
-        with zipfile.ZipFile(file, 'r') as zip_ref:
-            # don't put into temporary path, since want to keep references to docs inside zip
-            # so just extract in path where
-            zip_ref.extractall(base_path)
-            # recurse
-            doc1 = path_to_docs_func(base_path)
-    elif file.lower().endswith('.gz') or file.lower().endswith('.gzip'):
-        if file.lower().endswith('.gz'):
-            de_file = file.lower().replace('.gz', '')
-        else:
-            de_file = file.lower().replace('.gzip', '')
-        with gzip.open(file, 'rb') as f_in:
-            with open(de_file, 'wb') as f_out:
-                shutil.copyfileobj(f_in, f_out)
-        # recurse
-        doc1 = file_to_doc(de_file,
-                           filei=filei,  # single file, same file index as outside caller
-                           base_path=base_path, verbose=verbose, fail_any_exception=fail_any_exception,
-                           chunk=chunk, chunk_size=chunk_size, n_jobs=n_jobs,
-                           is_url=is_url, is_txt=is_txt,
-
-                           # urls
-                           use_unstructured=use_unstructured,
-                           use_playwright=use_playwright,
-                           use_selenium=use_selenium,
-
-                           # pdfs
-                           use_pymupdf=use_pymupdf,
-                           use_unstructured_pdf=use_unstructured_pdf,
-                           use_pypdf=use_pypdf,
-                           enable_pdf_ocr=enable_pdf_ocr,
-                           enable_pdf_doctr=enable_pdf_doctr,
-                           try_pdf_as_html=try_pdf_as_html,
-
-                           # images
-                           enable_ocr=enable_ocr,
-                           enable_doctr=enable_doctr,
-                           enable_pix2struct=enable_pix2struct,
-                           enable_captions=enable_captions,
-                           captions_model=captions_model,
-                           model_loaders=model_loaders,
-
-                           # json
-                           jq_schema=jq_schema,
-
-                           headsize=headsize,
-                           db_type=db_type,
-                           selected_file_types=selected_file_types)
-    else:
-        raise RuntimeError("No file handler for %s" % os.path.basename(file))
-
-    # allow doc1 to be list or not.
-    if not isinstance(doc1, list):
-        # If not list, did not chunk yet, so chunk now
-        docs = chunk_sources([doc1])
-    elif isinstance(doc1, list) and len(doc1) == 1:
-        # if list of length one, don't trust and chunk it, chunk_id's will still be correct if repeat
-        docs = chunk_sources(doc1)
-    else:
-        docs = doc1
-
-    assert isinstance(docs, list)
-    return docs
-
-
-def path_to_doc1(file,
-                 filei=0,
-                 verbose=False, fail_any_exception=False, return_file=True,
-                 chunk=True, chunk_size=512,
-                 n_jobs=-1,
-                 is_url=False, is_txt=False,
-
-                 # urls
-                 use_unstructured=True,
-                 use_playwright=False,
-                 use_selenium=False,
-
-                 # pdfs
-                 use_pymupdf='auto',
-                 use_unstructured_pdf='auto',
-                 use_pypdf='auto',
-                 enable_pdf_ocr='auto',
-                 enable_pdf_doctr='auto',
-                 try_pdf_as_html='auto',
-
-                 # images
-                 enable_ocr=False,
-                 enable_doctr=False,
-                 enable_pix2struct=False,
-                 enable_captions=True,
-                 captions_model=None,
-                 model_loaders=None,
-
-                 # json
-                 jq_schema='.[]',
-
-                 db_type=None,
-                 selected_file_types=None):
-    assert db_type is not None
-    if verbose:
-        if is_url:
-            print("Ingesting URL: %s" % file, flush=True)
-        elif is_txt:
-            print("Ingesting Text: %s" % file, flush=True)
-        else:
-            print("Ingesting file: %s" % file, flush=True)
-    res = None
-    try:
-        # don't pass base_path=path, would infinitely recurse
-        res = file_to_doc(file,
-                          filei=filei,
-                          base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
-                          chunk=chunk, chunk_size=chunk_size,
-                          n_jobs=n_jobs,
-                          is_url=is_url, is_txt=is_txt,
-
-                          # urls
-                          use_unstructured=use_unstructured,
-                          use_playwright=use_playwright,
-                          use_selenium=use_selenium,
-
-                          # pdfs
-                          use_pymupdf=use_pymupdf,
-                          use_unstructured_pdf=use_unstructured_pdf,
-                          use_pypdf=use_pypdf,
-                          enable_pdf_ocr=enable_pdf_ocr,
-                          enable_pdf_doctr=enable_pdf_doctr,
-                          try_pdf_as_html=try_pdf_as_html,
-
-                          # images
-                          enable_ocr=enable_ocr,
-                          enable_doctr=enable_doctr,
-                          enable_pix2struct=enable_pix2struct,
-                          enable_captions=enable_captions,
-                          captions_model=captions_model,
-                          model_loaders=model_loaders,
-
-                          # json
-                          jq_schema=jq_schema,
-
-                          db_type=db_type,
-                          selected_file_types=selected_file_types)
-    except BaseException as e:
-        print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
-        if fail_any_exception:
-            raise
-        else:
-            exception_doc = Document(
-                page_content='',
-                metadata={"source": file, "exception": '%s Exception: %s' % (file, str(e)),
-                          "traceback": traceback.format_exc()})
-            res = [exception_doc]
-    if verbose:
-        if is_url:
-            print("DONE Ingesting URL: %s" % file, flush=True)
-        elif is_txt:
-            print("DONE Ingesting Text: %s" % file, flush=True)
-        else:
-            print("DONE Ingesting file: %s" % file, flush=True)
-    if return_file:
-        base_tmp = "temp_path_to_doc1"
-        if not os.path.isdir(base_tmp):
-            base_tmp = makedirs(base_tmp, exist_ok=True, tmp_ok=True, use_base=True)
-        filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
-        with open(filename, 'wb') as f:
-            pickle.dump(res, f)
-        return filename
-    return res
-
-
-def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
-                 chunk=True, chunk_size=512,
-                 url=None, text=None,
-
-                 # urls
-                 use_unstructured=True,
-                 use_playwright=False,
-                 use_selenium=False,
-
-                 # pdfs
-                 use_pymupdf='auto',
-                 use_unstructured_pdf='auto',
-                 use_pypdf='auto',
-                 enable_pdf_ocr='auto',
-                 enable_pdf_doctr='auto',
-                 try_pdf_as_html='auto',
-
-                 # images
-                 enable_ocr=False,
-                 enable_doctr=False,
-                 enable_pix2struct=False,
-                 enable_captions=True,
-                 captions_model=None,
-
-                 caption_loader=None,
-                 doctr_loader=None,
-                 pix2struct_loader=None,
-
-                 # json
-                 jq_schema='.[]',
-
-                 existing_files=[],
-                 existing_hash_ids={},
-                 db_type=None,
-                 selected_file_types=None,
-                 ):
-    if verbose:
-        print("BEGIN Consuming path_or_paths=%s url=%s text=%s" % (path_or_paths, url, text), flush=True)
-    if selected_file_types is not None:
-        non_image_types1 = [x for x in non_image_types if x in selected_file_types]
-        image_types1 = [x for x in image_types if x in selected_file_types]
-    else:
-        non_image_types1 = non_image_types.copy()
-        image_types1 = image_types.copy()
-
-    assert db_type is not None
-    # path_or_paths could be str, list, tuple, generator
-    globs_image_types = []
-    globs_non_image_types = []
-    if not path_or_paths and not url and not text:
-        return []
-    elif url:
-        url = get_list_or_str(url)
-        globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url]
-    elif text:
-        globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text]
-    elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths):
-        # single path, only consume allowed files
-        path = path_or_paths
-        # Below globs should match patterns in file_to_doc()
-        [globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
-         for ftype in image_types1]
-        globs_image_types = [os.path.normpath(x) for x in globs_image_types]
-        [globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
-         for ftype in non_image_types1]
-        globs_non_image_types = [os.path.normpath(x) for x in globs_non_image_types]
-    else:
-        if isinstance(path_or_paths, str):
-            if os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths):
-                path_or_paths = [path_or_paths]
-            else:
-                # path was deleted etc.
-                return []
-        # list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
-        assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), \
-            "Wrong type for path_or_paths: %s %s" % (path_or_paths, type(path_or_paths))
-        # reform out of allowed types
-        globs_image_types.extend(
-            flatten_list([[os.path.normpath(x) for x in path_or_paths if x.endswith(y)] for y in image_types1]))
-        # could do below:
-        # globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types1])
-        # But instead, allow fail so can collect unsupported too
-        set_globs_image_types = set(globs_image_types)
-        globs_non_image_types.extend([os.path.normpath(x) for x in path_or_paths if x not in set_globs_image_types])
-
-    # filter out any files to skip (e.g. if already processed them)
-    # this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
-    assert not existing_files, "DEV: assume not using this approach"
-    if existing_files:
-        set_skip_files = set(existing_files)
-        globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
-        globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
-    if existing_hash_ids:
-        # assume consistent with add_meta() use of hash_file(file)
-        # also assume consistent with get_existing_hash_ids for dict creation
-        # assume hashable values
-        existing_hash_ids_set = set(existing_hash_ids.items())
-        hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
-        hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
-        # don't use symmetric diff.  If file is gone, ignore and don't remove or something
-        #  just consider existing files (key) having new hash or not (value)
-        new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
-        new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
-        globs_image_types = [x for x in globs_image_types if x in new_files_image]
-        globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]
-
-    # could use generator, but messes up metadata handling in recursive case
-    if caption_loader and not isinstance(caption_loader, (bool, str)) and caption_loader.device != 'cpu' or \
-            get_device() == 'cuda':
-        # to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
-        # get_device() == 'cuda' because presume faster to process image from (temporarily) preloaded model
-        n_jobs_image = 1
-    else:
-        n_jobs_image = n_jobs
-    if enable_doctr or enable_pdf_doctr in [True, 'auto', 'on']:
-        if doctr_loader and not isinstance(doctr_loader, (bool, str)) and doctr_loader.device != 'cpu':
-            # can't fork cuda context
-            n_jobs = 1
-
-    return_file = True  # local choice
-    is_url = url is not None
-    is_txt = text is not None
-    model_loaders = dict(caption=caption_loader,
-                         doctr=doctr_loader,
-                         pix2struct=pix2struct_loader)
-    model_loaders0 = model_loaders.copy()
-    kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
-                  return_file=return_file,
-                  chunk=chunk, chunk_size=chunk_size,
-                  n_jobs=n_jobs,
-                  is_url=is_url,
-                  is_txt=is_txt,
-
-                  # urls
-                  use_unstructured=use_unstructured,
-                  use_playwright=use_playwright,
-                  use_selenium=use_selenium,
-
-                  # pdfs
-                  use_pymupdf=use_pymupdf,
-                  use_unstructured_pdf=use_unstructured_pdf,
-                  use_pypdf=use_pypdf,
-                  enable_pdf_ocr=enable_pdf_ocr,
-                  enable_pdf_doctr=enable_pdf_doctr,
-                  try_pdf_as_html=try_pdf_as_html,
-
-                  # images
-                  enable_ocr=enable_ocr,
-                  enable_doctr=enable_doctr,
-                  enable_pix2struct=enable_pix2struct,
-                  enable_captions=enable_captions,
-                  captions_model=captions_model,
-                  model_loaders=model_loaders,
-
-                  # json
-                  jq_schema=jq_schema,
-
-                  db_type=db_type,
-                  selected_file_types=selected_file_types,
-                  )
-    if n_jobs != 1 and len(globs_non_image_types) > 1:
-        # avoid nesting, e.g. upload 1 zip and then inside many files
-        # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
-        documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
-            delayed(path_to_doc1)(file, filei=filei, **kwargs) for filei, file in enumerate(globs_non_image_types)
-        )
-    else:
-        documents = [path_to_doc1(file, filei=filei, **kwargs) for filei, file in
-                     enumerate(tqdm(globs_non_image_types))]
-
-    # do images separately since can't fork after cuda in parent, so can't be parallel
-    if n_jobs_image != 1 and len(globs_image_types) > 1:
-        # avoid nesting, e.g. upload 1 zip and then inside many files
-        # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
-        image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
-            delayed(path_to_doc1)(file, filei=filei, **kwargs) for filei, file in enumerate(globs_image_types)
-        )
-    else:
-        image_documents = [path_to_doc1(file, filei=filei, **kwargs) for filei, file in
-                           enumerate(tqdm(globs_image_types))]
-
-    # unload loaders (image loaders, includes enable_pdf_doctr that uses same loader)
-    for name, loader in model_loaders.items():
-        loader0 = model_loaders0[name]
-        real_model_initial = loader0 is not None and not isinstance(loader0, (str, bool))
-        real_model_final = model_loaders[name] is not None and not isinstance(model_loaders[name], (str, bool))
-        if not real_model_initial and real_model_final:
-            # clear off GPU newly added model
-            model_loaders[name].unload_model()
-
-    # add image docs in
-    documents += image_documents
-
-    if return_file:
-        # then documents really are files
-        files = documents.copy()
-        documents = []
-        for fil in files:
-            with open(fil, 'rb') as f:
-                documents.extend(pickle.load(f))
-            # remove temp pickle
-            remove(fil)
-    else:
-        documents = reduce(concat, documents)
-
-    if verbose:
-        print("END consuming path_or_paths=%s url=%s text=%s" % (path_or_paths, url, text), flush=True)
-    return documents
-
-
-def prep_langchain(persist_directory,
-                   load_db_if_exists,
-                   db_type, use_openai_embedding,
-                   langchain_mode, langchain_mode_paths, langchain_mode_types,
-                   hf_embedding_model,
-                   migrate_embedding_model,
-                   auto_migrate_db,
-                   n_jobs=-1, kwargs_make_db={},
-                   verbose=False):
-    """
-    do prep first time, involving downloads
-    # FIXME: Add github caching then add here
-    :return:
-    """
-    if os.getenv("HARD_ASSERTS"):
-        assert langchain_mode not in ['MyData'], "Should not prep scratch/personal data"
-
-    if langchain_mode in langchain_modes_intrinsic:
-        return None
-
-    db_dir_exists = os.path.isdir(persist_directory)
-    user_path = langchain_mode_paths.get(langchain_mode)
-
-    if db_dir_exists and user_path is None:
-        if verbose:
-            print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
-        db, use_openai_embedding, hf_embedding_model = \
-            get_existing_db(None, persist_directory, load_db_if_exists,
-                            db_type, use_openai_embedding,
-                            langchain_mode, langchain_mode_paths, langchain_mode_types,
-                            hf_embedding_model, migrate_embedding_model, auto_migrate_db,
-                            n_jobs=n_jobs)
-    else:
-        if db_dir_exists and user_path is not None:
-            if verbose:
-                print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
-                    persist_directory, user_path), flush=True)
-        elif not db_dir_exists:
-            if verbose:
-                print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
-        db = None
-        if langchain_mode in ['DriverlessAI docs']:
-            # FIXME: Could also just use dai_docs.pickle directly and upload that
-            get_dai_docs(from_hf=True)
-
-        if langchain_mode in ['wiki']:
-            get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])
-
-        langchain_kwargs = kwargs_make_db.copy()
-        langchain_kwargs.update(locals())
-        db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)
-
-    return db
-
-
-import posthog
-
-posthog.disabled = True
-
-
-class FakeConsumer(object):
-    def __init__(self, *args, **kwargs):
-        pass
-
-    def run(self):
-        pass
-
-    def pause(self):
-        pass
-
-    def upload(self):
-        pass
-
-    def next(self):
-        pass
-
-    def request(self, batch):
-        pass
-
-
-posthog.Consumer = FakeConsumer
-
-
-def check_update_chroma_embedding(db,
-                                  db_type,
-                                  use_openai_embedding,
-                                  hf_embedding_model, migrate_embedding_model, auto_migrate_db,
-                                  langchain_mode, langchain_mode_paths, langchain_mode_types,
-                                  n_jobs=-1):
-    changed_db = False
-    embed_tuple = load_embed(db=db)
-    if embed_tuple not in [(True, use_openai_embedding, hf_embedding_model),
-                           (False, use_openai_embedding, hf_embedding_model)]:
-        print("Detected new embedding %s vs. %s %s, updating db: %s" % (
-            use_openai_embedding, hf_embedding_model, embed_tuple, langchain_mode), flush=True)
-        # handle embedding changes
-        db_get = get_documents(db)
-        sources = [Document(page_content=result[0], metadata=result[1] or {})
-                   for result in zip(db_get['documents'], db_get['metadatas'])]
-        # delete index, has to be redone
-        persist_directory = db._persist_directory
-        shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
-        assert db_type in ['chroma', 'chroma_old']
-        load_db_if_exists = False
-        db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
-                    persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
-                    langchain_mode=langchain_mode,
-                    langchain_mode_paths=langchain_mode_paths,
-                    langchain_mode_types=langchain_mode_types,
-                    collection_name=None,
-                    hf_embedding_model=hf_embedding_model,
-                    migrate_embedding_model=migrate_embedding_model,
-                    auto_migrate_db=auto_migrate_db,
-                    n_jobs=n_jobs,
-                    )
-        changed_db = True
-        print("Done updating db for new embedding: %s" % langchain_mode, flush=True)
-
-    return db, changed_db
-
-
-def migrate_meta_func(db, langchain_mode):
-    changed_db = False
-    db_get = get_documents(db)
-    # just check one doc
-    if len(db_get['metadatas']) > 0 and 'chunk_id' not in db_get['metadatas'][0]:
-        print("Detected old metadata, adding additional information", flush=True)
-        t0 = time.time()
-        # handle meta changes
-        [x.update(dict(chunk_id=x.get('chunk_id', 0))) for x in db_get['metadatas']]
-        client_collection = db._client.get_collection(name=db._collection.name,
-                                                      embedding_function=db._collection._embedding_function)
-        client_collection.update(ids=db_get['ids'], metadatas=db_get['metadatas'])
-        # check
-        db_get = get_documents(db)
-        assert 'chunk_id' in db_get['metadatas'][0], "Failed to add meta"
-        changed_db = True
-        print("Done updating db for new meta: %s in %s seconds" % (langchain_mode, time.time() - t0), flush=True)
-
-    return db, changed_db
-
-
-def get_existing_db(db, persist_directory,
-                    load_db_if_exists, db_type, use_openai_embedding,
-                    langchain_mode, langchain_mode_paths, langchain_mode_types,
-                    hf_embedding_model,
-                    migrate_embedding_model,
-                    auto_migrate_db=False,
-                    verbose=False, check_embedding=True, migrate_meta=True,
-                    n_jobs=-1):
-    if load_db_if_exists and db_type in ['chroma', 'chroma_old'] and os.path.isdir(persist_directory):
-        if os.path.isfile(os.path.join(persist_directory, 'chroma.sqlite3')):
-            must_migrate = False
-        elif os.path.isdir(os.path.join(persist_directory, 'index')):
-            must_migrate = True
-        else:
-            return db, use_openai_embedding, hf_embedding_model
-        chroma_settings = dict(is_persistent=True)
-        use_chromamigdb = False
-        if must_migrate:
-            if auto_migrate_db:
-                print("Detected chromadb<0.4 database, require migration, doing now....", flush=True)
-                from chroma_migrate.import_duckdb import migrate_from_duckdb
-                import chromadb
-                api = chromadb.PersistentClient(path=persist_directory)
-                did_migration = migrate_from_duckdb(api, persist_directory)
-                assert did_migration, "Failed to migrate chroma collection at %s, see https://docs.trychroma.com/migration for CLI tool" % persist_directory
-            elif have_chromamigdb:
-                print(
-                    "Detected chroma<0.4 database but --auto_migrate_db=False, but detected chromamigdb package, so using old database that still requires duckdb",
-                    flush=True)
-                chroma_settings = dict(chroma_db_impl="duckdb+parquet")
-                use_chromamigdb = True
-            else:
-                raise ValueError(
-                    "Detected chromadb<0.4 database, require migration, but did not detect chromamigdb package or did not choose auto_migrate_db=False (see FAQ.md)")
-
-        if db is None:
-            if verbose:
-                print("DO Loading db: %s" % langchain_mode, flush=True)
-            got_embedding, use_openai_embedding0, hf_embedding_model0 = load_embed(persist_directory=persist_directory)
-            if got_embedding:
-                use_openai_embedding, hf_embedding_model = use_openai_embedding0, hf_embedding_model0
-            embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
-            import logging
-            logging.getLogger("chromadb").setLevel(logging.ERROR)
-            if use_chromamigdb:
-                from chromamigdb.config import Settings
-                chroma_class = ChromaMig
-            else:
-                from chromadb.config import Settings
-                chroma_class = Chroma
-            client_settings = Settings(anonymized_telemetry=False,
-                                       **chroma_settings,
-                                       persist_directory=persist_directory)
-            db = chroma_class(persist_directory=persist_directory, embedding_function=embedding,
-                              collection_name=langchain_mode.replace(' ', '_'),
-                              client_settings=client_settings)
-            try:
-                db.similarity_search('')
-            except BaseException as e:
-                # migration when no embed_info
-                if 'Dimensionality of (768) does not match index dimensionality (384)' in str(e) or \
-                        'Embedding dimension 768 does not match collection dimensionality 384' in str(e):
-                    hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
-                    embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
-                    db = chroma_class(persist_directory=persist_directory, embedding_function=embedding,
-                                      collection_name=langchain_mode.replace(' ', '_'),
-                                      client_settings=client_settings)
-                    # should work now, let fail if not
-                    db.similarity_search('')
-                    save_embed(db, use_openai_embedding, hf_embedding_model)
-                else:
-                    raise
-
-            if verbose:
-                print("DONE Loading db: %s" % langchain_mode, flush=True)
-        else:
-            if not migrate_embedding_model:
-                # OVERRIDE embedding choices if could load embedding info when not migrating
-                got_embedding, use_openai_embedding, hf_embedding_model = load_embed(db=db)
-            if verbose:
-                print("USING already-loaded db: %s" % langchain_mode, flush=True)
-        if check_embedding:
-            db_trial, changed_db = check_update_chroma_embedding(db,
-                                                                 db_type,
-                                                                 use_openai_embedding,
-                                                                 hf_embedding_model,
-                                                                 migrate_embedding_model,
-                                                                 auto_migrate_db,
-                                                                 langchain_mode,
-                                                                 langchain_mode_paths,
-                                                                 langchain_mode_types,
-                                                                 n_jobs=n_jobs)
-            if changed_db:
-                db = db_trial
-                # only call persist if really changed db, else takes too long for large db
-                if db is not None:
-                    db.persist()
-                    clear_embedding(db)
-        save_embed(db, use_openai_embedding, hf_embedding_model)
-        if migrate_meta and db is not None:
-            db_trial, changed_db = migrate_meta_func(db, langchain_mode)
-            if changed_db:
-                db = db_trial
-        return db, use_openai_embedding, hf_embedding_model
-    return db, use_openai_embedding, hf_embedding_model
-
-
-def clear_embedding(db):
-    if db is None:
-        return
-    # don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
-    try:
-        if hasattr(db._embedding_function, 'client') and hasattr(db._embedding_function.client, 'cpu'):
-            # only push back to CPU if each db/user has own embedding model, else if shared share on GPU
-            if hasattr(db._embedding_function.client, 'preload') and not db._embedding_function.client.preload:
-                db._embedding_function.client.cpu()
-                clear_torch_cache()
-    except RuntimeError as e:
-        print("clear_embedding error: %s" % ''.join(traceback.format_tb(e.__traceback__)), flush=True)
-
-
-def make_db(**langchain_kwargs):
-    func_names = list(inspect.signature(_make_db).parameters)
-    missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
-    defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
-    for k in missing_kwargs:
-        if k in defaults_db:
-            langchain_kwargs[k] = defaults_db[k]
-    # final check for missing
-    missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
-    assert not missing_kwargs, "Missing kwargs for make_db: %s" % missing_kwargs
-    # only keep actual used
-    langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
-    return _make_db(**langchain_kwargs)
-
-
-embed_lock_name = 'embed.lock'
-
-
-def get_embed_lock_file(db, persist_directory=None):
-    if hasattr(db, '_persist_directory') or persist_directory:
-        if persist_directory is None:
-            persist_directory = db._persist_directory
-        check_persist_directory(persist_directory)
-        base_path = os.path.join('locks', persist_directory)
-        base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
-        lock_file = os.path.join(base_path, embed_lock_name)
-        makedirs(os.path.dirname(lock_file))
-        return lock_file
-    return None
-
-
-def save_embed(db, use_openai_embedding, hf_embedding_model):
-    if hasattr(db, '_persist_directory'):
-        persist_directory = db._persist_directory
-        lock_file = get_embed_lock_file(db)
-        with filelock.FileLock(lock_file):
-            embed_info_file = os.path.join(persist_directory, 'embed_info')
-            with open(embed_info_file, 'wb') as f:
-                if isinstance(hf_embedding_model, str):
-                    hf_embedding_model_save = hf_embedding_model
-                elif hasattr(hf_embedding_model, 'model_name'):
-                    hf_embedding_model_save = hf_embedding_model.model_name
-                elif isinstance(hf_embedding_model, dict) and 'name' in hf_embedding_model:
-                    hf_embedding_model_save = hf_embedding_model['name']
-                elif isinstance(hf_embedding_model, dict) and 'name' in hf_embedding_model:
-                    if os.getenv('HARD_ASSERTS'):
-                        # unexpected in testing or normally
-                        raise RuntimeError("HERE")
-                    hf_embedding_model_save = 'hkunlp/instructor-large'
-                pickle.dump((use_openai_embedding, hf_embedding_model_save), f)
-    return use_openai_embedding, hf_embedding_model
-
-
-def load_embed(db=None, persist_directory=None):
-    if hasattr(db, 'embeddings') and hasattr(db.embeddings, 'model_name'):
-        hf_embedding_model = db.embeddings.model_name if 'openai' not in db.embeddings.model_name.lower() else None
-        use_openai_embedding = hf_embedding_model is None
-        save_embed(db, use_openai_embedding, hf_embedding_model)
-        return True, use_openai_embedding, hf_embedding_model
-    if persist_directory is None:
-        persist_directory = db._persist_directory
-    embed_info_file = os.path.join(persist_directory, 'embed_info')
-    if os.path.isfile(embed_info_file):
-        lock_file = get_embed_lock_file(db, persist_directory=persist_directory)
-        with filelock.FileLock(lock_file):
-            with open(embed_info_file, 'rb') as f:
-                try:
-                    use_openai_embedding, hf_embedding_model = pickle.load(f)
-                    if not isinstance(hf_embedding_model, str):
-                        # work-around bug introduced here: https://github.com/h2oai/h2ogpt/commit/54c4414f1ce3b5b7c938def651c0f6af081c66de
-                        hf_embedding_model = 'hkunlp/instructor-large'
-                        # fix file
-                        save_embed(db, use_openai_embedding, hf_embedding_model)
-                    got_embedding = True
-                except EOFError:
-                    use_openai_embedding, hf_embedding_model = False, 'hkunlp/instructor-large'
-                    got_embedding = False
-                    if os.getenv('HARD_ASSERTS'):
-                        # unexpected in testing or normally
-                        raise
-    else:
-        # migration, assume defaults
-        use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
-        got_embedding = False
-    assert isinstance(hf_embedding_model, str)
-    return got_embedding, use_openai_embedding, hf_embedding_model
-
-
-def get_persist_directory(langchain_mode, langchain_type=None, db1s=None, dbs=None):
-    if langchain_mode in [LangChainMode.DISABLED.value, LangChainMode.LLM.value]:
-        # not None so join works but will fail to find db
-        return '', langchain_type
-
-    userid = get_userid_direct(db1s)
-    username = get_username_direct(db1s)
-
-    # sanity for bad code
-    assert userid != 'None'
-    assert username != 'None'
-
-    dirid = username or userid
-    if langchain_type == LangChainTypes.SHARED.value and not dirid:
-        dirid = './'  # just to avoid error
-    if langchain_type == LangChainTypes.PERSONAL.value and not dirid:
-        # e.g. from client when doing transient calls with MyData
-        if db1s is None:
-            # just trick to get filled locally
-            db1s = {LangChainMode.MY_DATA.value: [None, None, None]}
-        set_userid_direct(db1s, str(uuid.uuid4()), str(uuid.uuid4()))
-        userid = get_userid_direct(db1s)
-        username = get_username_direct(db1s)
-        dirid = username or userid
-        langchain_type = LangChainTypes.PERSONAL.value
-
-    # deal with existing locations
-    user_base_dir = os.getenv('USERS_BASE_DIR', 'users')
-    persist_directory = os.path.join(user_base_dir, dirid, 'db_dir_%s' % langchain_mode)
-    if userid and \
-            (os.path.isdir(persist_directory) or
-             db1s is not None and langchain_mode in db1s or
-             langchain_type == LangChainTypes.PERSONAL.value):
-        langchain_type = LangChainTypes.PERSONAL.value
-        persist_directory = makedirs(persist_directory, use_base=True)
-        check_persist_directory(persist_directory)
-        return persist_directory, langchain_type
-
-    persist_directory = 'db_dir_%s' % langchain_mode
-    if (os.path.isdir(persist_directory) or
-            dbs is not None and langchain_mode in dbs or
-            langchain_type == LangChainTypes.SHARED.value):
-        # ensure consistent
-        langchain_type = LangChainTypes.SHARED.value
-        persist_directory = makedirs(persist_directory, use_base=True)
-        check_persist_directory(persist_directory)
-        return persist_directory, langchain_type
-
-    # dummy return for prep_langchain() or full personal space
-    base_others = 'db_nonusers'
-    persist_directory = os.path.join(base_others, 'db_dir_%s' % str(uuid.uuid4()))
-    persist_directory = makedirs(persist_directory, use_base=True)
-    langchain_type = LangChainTypes.PERSONAL.value
-
-    check_persist_directory(persist_directory)
-    return persist_directory, langchain_type
-
-
-def check_persist_directory(persist_directory):
-    # deal with some cases when see intrinsic names being used as shared
-    for langchain_mode in langchain_modes_intrinsic:
-        if persist_directory == 'db_dir_%s' % langchain_mode:
-            raise RuntimeError("Illegal access to %s" % persist_directory)
-
-
-def _make_db(use_openai_embedding=False,
-             hf_embedding_model=None,
-             migrate_embedding_model=False,
-             auto_migrate_db=False,
-             first_para=False, text_limit=None,
-             chunk=True, chunk_size=512,
-
-             # urls
-             use_unstructured=True,
-             use_playwright=False,
-             use_selenium=False,
-
-             # pdfs
-             use_pymupdf='auto',
-             use_unstructured_pdf='auto',
-             use_pypdf='auto',
-             enable_pdf_ocr='auto',
-             enable_pdf_doctr='auto',
-             try_pdf_as_html='auto',
-
-             # images
-             enable_ocr=False,
-             enable_doctr=False,
-             enable_pix2struct=False,
-             enable_captions=True,
-             captions_model=None,
-             caption_loader=None,
-             doctr_loader=None,
-             pix2struct_loader=None,
-
-             # json
-             jq_schema='.[]',
-
-             langchain_mode=None,
-             langchain_mode_paths=None,
-             langchain_mode_types=None,
-             db_type='faiss',
-             load_db_if_exists=True,
-             db=None,
-             n_jobs=-1,
-             verbose=False):
-    assert hf_embedding_model is not None
-    user_path = langchain_mode_paths.get(langchain_mode)
-    langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
-    persist_directory, langchain_type = get_persist_directory(langchain_mode, langchain_type=langchain_type)
-    langchain_mode_types[langchain_mode] = langchain_type
-    # see if can get persistent chroma db
-    db_trial, use_openai_embedding, hf_embedding_model = \
-        get_existing_db(db, persist_directory, load_db_if_exists, db_type,
-                        use_openai_embedding,
-                        langchain_mode, langchain_mode_paths, langchain_mode_types,
-                        hf_embedding_model, migrate_embedding_model, auto_migrate_db, verbose=verbose,
-                        n_jobs=n_jobs)
-    if db_trial is not None:
-        db = db_trial
-
-    sources = []
-    if not db:
-        chunk_sources = functools.partial(_chunk_sources, chunk=chunk, chunk_size=chunk_size, db_type=db_type)
-        if langchain_mode in ['wiki_full']:
-            from read_wiki_full import get_all_documents
-            small_test = None
-            print("Generating new wiki", flush=True)
-            sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
-            print("Got new wiki", flush=True)
-            sources1 = chunk_sources(sources1, chunk=chunk)
-            print("Chunked new wiki", flush=True)
-            sources.extend(sources1)
-        elif langchain_mode in ['wiki']:
-            sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
-            sources1 = chunk_sources(sources1, chunk=chunk)
-            sources.extend(sources1)
-        elif langchain_mode in ['github h2oGPT']:
-            # sources = get_github_docs("dagster-io", "dagster")
-            sources1 = get_github_docs("h2oai", "h2ogpt")
-            # FIXME: always chunk for now
-            sources1 = chunk_sources(sources1)
-            sources.extend(sources1)
-        elif langchain_mode in ['DriverlessAI docs']:
-            sources1 = get_dai_docs(from_hf=True)
-            # FIXME: DAI docs are already chunked well, should only chunk more if over limit
-            sources1 = chunk_sources(sources1, chunk=False)
-            sources.extend(sources1)
-    if user_path:
-        # UserData or custom, which has to be from user's disk
-        if db is not None:
-            # NOTE: Ignore file names for now, only go by hash ids
-            # existing_files = get_existing_files(db)
-            existing_files = []
-            existing_hash_ids = get_existing_hash_ids(db)
-        else:
-            # pretend no existing files so won't filter
-            existing_files = []
-            existing_hash_ids = []
-        # chunk internally for speed over multiple docs
-        # FIXME: If first had old Hash=None and switch embeddings,
-        #  then re-embed, and then hit here and reload so have hash, and then re-embed.
-        sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
-                                # urls
-                                use_unstructured=use_unstructured,
-                                use_playwright=use_playwright,
-                                use_selenium=use_selenium,
-
-                                # pdfs
-                                use_pymupdf=use_pymupdf,
-                                use_unstructured_pdf=use_unstructured_pdf,
-                                use_pypdf=use_pypdf,
-                                enable_pdf_ocr=enable_pdf_ocr,
-                                enable_pdf_doctr=enable_pdf_doctr,
-                                try_pdf_as_html=try_pdf_as_html,
-
-                                # images
-                                enable_ocr=enable_ocr,
-                                enable_doctr=enable_doctr,
-                                enable_pix2struct=enable_pix2struct,
-                                enable_captions=enable_captions,
-                                captions_model=captions_model,
-                                caption_loader=caption_loader,
-                                doctr_loader=doctr_loader,
-                                pix2struct_loader=pix2struct_loader,
-
-                                # json
-                                jq_schema=jq_schema,
-
-                                existing_files=existing_files, existing_hash_ids=existing_hash_ids,
-                                db_type=db_type)
-        new_metadata_sources = set([x.metadata['source'] for x in sources1])
-        if new_metadata_sources:
-            if os.getenv('NO_NEW_FILES') is not None:
-                raise RuntimeError("Expected no new files! %s" % new_metadata_sources)
-            print("Loaded %s new files as sources to add to %s" % (len(new_metadata_sources), langchain_mode),
-                  flush=True)
-            if verbose:
-                print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
-        sources.extend(sources1)
-        if len(sources) > 0 and os.getenv('NO_NEW_FILES') is not None:
-            raise RuntimeError("Expected no new files! %s" % langchain_mode)
-        if len(sources) == 0 and os.getenv('SHOULD_NEW_FILES') is not None:
-            raise RuntimeError("Expected new files! %s" % langchain_mode)
-        print("Loaded %s sources for potentially adding to %s" % (len(sources), langchain_mode), flush=True)
-
-        # see if got sources
-        if not sources:
-            if verbose:
-                if db is not None:
-                    print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
-                else:
-                    print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
-            return db, 0, []
-        if verbose:
-            if db is not None:
-                print("Generating db", flush=True)
-            else:
-                print("Adding to db", flush=True)
-    if not db:
-        if sources:
-            db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
-                        persist_directory=persist_directory,
-                        langchain_mode=langchain_mode,
-                        langchain_mode_paths=langchain_mode_paths,
-                        langchain_mode_types=langchain_mode_types,
-                        hf_embedding_model=hf_embedding_model,
-                        migrate_embedding_model=migrate_embedding_model,
-                        auto_migrate_db=auto_migrate_db,
-                        n_jobs=n_jobs)
-            if verbose:
-                print("Generated db", flush=True)
-        elif langchain_mode not in langchain_modes_intrinsic:
-            print("Did not generate db for %s since no sources" % langchain_mode, flush=True)
-        new_sources_metadata = [x.metadata for x in sources]
-    elif user_path is not None:
-        print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
-        db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
-                                                              use_openai_embedding=use_openai_embedding,
-                                                              hf_embedding_model=hf_embedding_model)
-        print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
-    else:
-        new_sources_metadata = [x.metadata for x in sources]
-
-    return db, len(new_sources_metadata), new_sources_metadata
-
-
-def get_metadatas(db):
-    metadatas = []
-    from langchain.vectorstores import FAISS
-    if isinstance(db, FAISS):
-        metadatas = [v.metadata for k, v in db.docstore._dict.items()]
-    elif isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
-        metadatas = get_documents(db)['metadatas']
-    elif db is not None:
-        # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
-        # seems no way to get all metadata, so need to avoid this approach for weaviate
-        metadatas = [x.metadata for x in db.similarity_search("", k=10000)]
-    return metadatas
-
-
-def get_db_lock_file(db, lock_type='getdb'):
-    if hasattr(db, '_persist_directory'):
-        persist_directory = db._persist_directory
-        check_persist_directory(persist_directory)
-        base_path = os.path.join('locks', persist_directory)
-        base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
-        lock_file = os.path.join(base_path, "%s.lock" % lock_type)
-        makedirs(os.path.dirname(lock_file))  # ensure made
-        return lock_file
-    return None
-
-
-def get_documents(db):
-    if hasattr(db, '_persist_directory'):
-        lock_file = get_db_lock_file(db)
-        with filelock.FileLock(lock_file):
-            # get segfaults and other errors when multiple threads access this
-            return _get_documents(db)
-    else:
-        return _get_documents(db)
-
-
-def _get_documents(db):
-    from langchain.vectorstores import FAISS
-    if isinstance(db, FAISS):
-        documents = [v for k, v in db.docstore._dict.items()]
-        documents = dict(documents=documents)
-    elif isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
-        documents = db.get()
-    else:
-        # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
-        # seems no way to get all metadata, so need to avoid this approach for weaviate
-        documents = [x for x in db.similarity_search("", k=10000)]
-        documents = dict(documents=documents)
-    return documents
-
-
-def get_docs_and_meta(db, top_k_docs, filter_kwargs={}, text_context_list=None):
-    if hasattr(db, '_persist_directory'):
-        lock_file = get_db_lock_file(db)
-        with filelock.FileLock(lock_file):
-            return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs, text_context_list=text_context_list)
-    else:
-        return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs, text_context_list=text_context_list)
-
-
-def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}, text_context_list=None):
-    db_documents = []
-    db_metadatas = []
-
-    if text_context_list:
-        db_documents += [x.page_content if hasattr(x, 'page_content') else x for x in text_context_list]
-        db_metadatas += [x.metadata if hasattr(x, 'metadata') else {} for x in text_context_list]
-
-    from langchain.vectorstores import FAISS
-    if isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db):
-        db_get = db._collection.get(where=filter_kwargs.get('filter'))
-        db_metadatas += db_get['metadatas']
-        db_documents += db_get['documents']
-    elif isinstance(db, FAISS):
-        import itertools
-        db_metadatas += get_metadatas(db)
-        # FIXME: FAISS has no filter
-        if top_k_docs == -1:
-            db_documents += list(db.docstore._dict.values())
-        else:
-            # slice dict first
-            db_documents += list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values())
-    elif db is not None:
-        db_metadatas += get_metadatas(db)
-        db_documents += get_documents(db)['documents']
-
-    return db_documents, db_metadatas
-
-
-def get_existing_files(db):
-    metadatas = get_metadatas(db)
-    metadata_sources = set([x['source'] for x in metadatas])
-    return metadata_sources
-
-
-def get_existing_hash_ids(db):
-    metadatas = get_metadatas(db)
-    # assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
-    metadata_hash_ids = {os.path.normpath(x['source']): x.get('hashid') for x in metadatas}
-    return metadata_hash_ids
-
-
-def run_qa_db(**kwargs):
-    func_names = list(inspect.signature(_run_qa_db).parameters)
-    # hard-coded defaults
-    kwargs['answer_with_sources'] = kwargs.get('answer_with_sources', True)
-    kwargs['show_rank'] = kwargs.get('show_rank', False)
-    kwargs['show_accordions'] = kwargs.get('show_accordions', True)
-    kwargs['show_link_in_sources'] = kwargs.get('show_link_in_sources', True)
-    kwargs['top_k_docs_max_show'] = kwargs.get('top_k_docs_max_show', 10)
-    kwargs['llamacpp_dict'] = {}  # shouldn't be required unless from test using _run_qa_db
-    missing_kwargs = [x for x in func_names if x not in kwargs]
-    assert not missing_kwargs, "Missing kwargs for run_qa_db: %s" % missing_kwargs
-    # only keep actual used
-    kwargs = {k: v for k, v in kwargs.items() if k in func_names}
-    try:
-        return _run_qa_db(**kwargs)
-    finally:
-        clear_torch_cache()
-
-
-def _run_qa_db(query=None,
-               iinput=None,
-               context=None,
-               use_openai_model=False, use_openai_embedding=False,
-               first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
-
-               # urls
-               use_unstructured=True,
-               use_playwright=False,
-               use_selenium=False,
-
-               # pdfs
-               use_pymupdf='auto',
-               use_unstructured_pdf='auto',
-               use_pypdf='auto',
-               enable_pdf_ocr='auto',
-               enable_pdf_doctr='auto',
-               try_pdf_as_html='auto',
-
-               # images
-               enable_ocr=False,
-               enable_doctr=False,
-               enable_pix2struct=False,
-               enable_captions=True,
-               captions_model=None,
-               caption_loader=None,
-               doctr_loader=None,
-               pix2struct_loader=None,
-
-               # json
-               jq_schema='.[]',
-
-               langchain_mode_paths={},
-               langchain_mode_types={},
-               detect_user_path_changes_every_query=False,
-               db_type=None,
-               model_name=None, model=None, tokenizer=None, inference_server=None,
-               langchain_only_model=False,
-               hf_embedding_model=None,
-               migrate_embedding_model=False,
-               auto_migrate_db=False,
-               stream_output=False,
-               async_output=True,
-               num_async=3,
-               prompter=None,
-               prompt_type=None,
-               prompt_dict=None,
-               answer_with_sources=True,
-               append_sources_to_answer=True,
-               cut_distance=1.64,
-               add_chat_history_to_context=True,
-               add_search_to_context=False,
-               keep_sources_in_context=False,
-               memory_restriction_level=0,
-               system_prompt='',
-               sanitize_bot_response=False,
-               show_rank=False,
-               show_accordions=True,
-               show_link_in_sources=True,
-               top_k_docs_max_show=10,
-               use_llm_if_no_docs=True,
-               load_db_if_exists=False,
-               db=None,
-               do_sample=False,
-               temperature=0.1,
-               top_k=40,
-               top_p=0.7,
-               num_beams=1,
-               max_new_tokens=512,
-               min_new_tokens=1,
-               early_stopping=False,
-               max_time=180,
-               repetition_penalty=1.0,
-               num_return_sequences=1,
-               langchain_mode=None,
-               langchain_action=None,
-               langchain_agents=None,
-               document_subset=DocumentSubset.Relevant.name,
-               document_choice=[DocumentChoice.ALL.value],
-               pre_prompt_query=None,
-               prompt_query=None,
-               pre_prompt_summary=None,
-               prompt_summary=None,
-               text_context_list=None,
-               chat_conversation=None,
-               visible_models=None,
-               h2ogpt_key=None,
-               docs_ordering_type='reverse_ucurve_sort',
-               min_max_new_tokens=256,
-
-               n_jobs=-1,
-               llamacpp_dict=None,
-               verbose=False,
-               cli=False,
-               lora_weights='',
-               auto_reduce_chunks=True,
-               max_chunks=100,
-               total_tokens_for_docs=None,
-               headsize=50,
-               ):
-    """
-
-    :param query:
-    :param use_openai_model:
-    :param use_openai_embedding:
-    :param first_para:
-    :param text_limit:
-    :param top_k_docs:
-    :param chunk:
-    :param chunk_size:
-    :param langchain_mode_paths: dict of langchain_mode -> user path to glob recursively from
-    :param db_type: 'faiss' for in-memory
-                    'chroma' (for chroma >= 0.4)
-                    'chroma_old' (for chroma < 0.4)
-                    'weaviate' for persisted on disk
-    :param model_name: model name, used to switch behaviors
-    :param model: pre-initialized model, else will make new one
-    :param tokenizer: pre-initialized tokenizer, else will make new one.  Required not None if model is not None
-    :param answer_with_sources
-    :return:
-    """
-    t_run = time.time()
-    if stream_output:
-        # threads and asyncio don't mix
-        async_output = False
-    if langchain_action in [LangChainAction.QUERY.value]:
-        # only summarization supported
-        async_output = False
-
-    # in case None, e.g. lazy client, then set based upon actual model
-    pre_prompt_query, prompt_query, pre_prompt_summary, prompt_summary = \
-        get_langchain_prompts(pre_prompt_query, prompt_query,
-                              pre_prompt_summary, prompt_summary,
-                              model_name, inference_server,
-                              llamacpp_dict.get('model_path_llama'))
-
-    assert db_type is not None
-    assert hf_embedding_model is not None
-    assert langchain_mode_paths is not None
-    assert langchain_mode_types is not None
-    if model is not None:
-        assert model_name is not None  # require so can make decisions
-    assert query is not None
-    assert prompter is not None or prompt_type is not None or model is None  # if model is None, then will generate
-    if prompter is not None:
-        prompt_type = prompter.prompt_type
-        prompt_dict = prompter.prompt_dict
-    if model is not None:
-        assert prompt_type is not None
-        if prompt_type == PromptType.custom.name:
-            assert prompt_dict is not None  # should at least be {} or ''
-        else:
-            prompt_dict = ''
-
-    if LangChainAgent.SEARCH.value in langchain_agents and 'llama' in model_name.lower():
-        system_prompt = """You are a zero shot react agent.
-Consider to prompt of Question that was original query from the user.
-Respond to prompt of Thought with a thought that may lead to a reasonable new action choice.
-Respond to prompt of Action with an action to take out of the tools given, giving exactly single word for the tool name.
-Respond to prompt of Action Input with an input to give the tool.
-Consider to prompt of Observation that was response from the tool.
-Repeat this Thought, Action, Action Input, Observation, Thought sequence several times with new and different thoughts and actions each time, do not repeat.
-Once satisfied that the thoughts, responses are sufficient to answer the question, then respond to prompt of Thought with: I now know the final answer
-Respond to prompt of Final Answer with your final high-quality bullet list answer to the original query.
-"""
-        prompter.system_prompt = system_prompt
-
-    assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
-    # pass in context to LLM directly, since already has prompt_type structure
-    # can't pass through langchain in get_chain() to LLM: https://github.com/hwchase17/langchain/issues/6638
-    llm, model_name, streamer, prompt_type_out, async_output, only_new_text = \
-        get_llm(use_openai_model=use_openai_model, model_name=model_name,
-                model=model,
-                tokenizer=tokenizer,
-                inference_server=inference_server,
-                langchain_only_model=langchain_only_model,
-                stream_output=stream_output,
-                async_output=async_output,
-                num_async=num_async,
-                do_sample=do_sample,
-                temperature=temperature,
-                top_k=top_k,
-                top_p=top_p,
-                num_beams=num_beams,
-                max_new_tokens=max_new_tokens,
-                min_new_tokens=min_new_tokens,
-                early_stopping=early_stopping,
-                max_time=max_time,
-                repetition_penalty=repetition_penalty,
-                num_return_sequences=num_return_sequences,
-                prompt_type=prompt_type,
-                prompt_dict=prompt_dict,
-                prompter=prompter,
-                context=context,
-                iinput=iinput,
-                sanitize_bot_response=sanitize_bot_response,
-                system_prompt=system_prompt,
-                visible_models=visible_models,
-                h2ogpt_key=h2ogpt_key,
-                min_max_new_tokens=min_max_new_tokens,
-                n_jobs=n_jobs,
-                llamacpp_dict=llamacpp_dict,
-                cli=cli,
-                verbose=verbose,
-                )
-    # in case change, override original prompter
-    if hasattr(llm, 'prompter'):
-        prompter = llm.prompter
-    if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'prompter'):
-        prompter = llm.pipeline.prompter
-
-    if prompter is None:
-        if prompt_type is None:
-            prompt_type = prompt_type_out
-        # get prompter
-        chat = True  # FIXME?
-        prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=chat, stream_output=stream_output,
-                            system_prompt=system_prompt)
-
-    use_docs_planned = False
-    scores = []
-    chain = None
-
-    # basic version of prompt without docs etc.
-    data_point = dict(context=context, instruction=query, input=iinput)
-    prompt_basic = prompter.generate_prompt(data_point)
-
-    if isinstance(document_choice, str):
-        # support string as well
-        document_choice = [document_choice]
-
-    func_names = list(inspect.signature(get_chain).parameters)
-    sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
-    missing_kwargs = [x for x in func_names if x not in sim_kwargs]
-    assert not missing_kwargs, "Missing: %s" % missing_kwargs
-    docs, chain, scores, \
-        use_docs_planned, num_docs_before_cut, \
-        use_llm_if_no_docs, llm_mode, top_k_docs_max_show = \
-        get_chain(**sim_kwargs)
-    if document_subset in non_query_commands:
-        formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
-        if not formatted_doc_chunks and not use_llm_if_no_docs:
-            yield dict(prompt=prompt_basic, response="No sources", sources='', num_prompt_tokens=0)
-            return
-        # if no souces, outside gpt_langchain, LLM will be used with '' input
-        scores = [1] * len(docs)
-        get_answer_args = tuple([query, docs, formatted_doc_chunks, scores, show_rank,
-                                 answer_with_sources,
-                                 append_sources_to_answer])
-        get_answer_kwargs = dict(show_accordions=show_accordions,
-                                 show_link_in_sources=show_link_in_sources,
-                                 top_k_docs_max_show=top_k_docs_max_show,
-                                 docs_ordering_type=docs_ordering_type,
-                                 num_docs_before_cut=num_docs_before_cut,
-                                 verbose=verbose)
-        ret, extra = get_sources_answer(*get_answer_args, **get_answer_kwargs)
-        yield dict(prompt=prompt_basic, response=formatted_doc_chunks, sources=extra, num_prompt_tokens=0)
-        return
-    if not use_llm_if_no_docs:
-        if not docs and langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
-                                             LangChainAction.SUMMARIZE_ALL.value,
-                                             LangChainAction.SUMMARIZE_REFINE.value]:
-            ret = 'No relevant documents to summarize.' if num_docs_before_cut else 'No documents to summarize.'
-            extra = ''
-            yield dict(prompt=prompt_basic, response=ret, sources=extra, num_prompt_tokens=0)
-            return
-        if not docs and not llm_mode:
-            ret = 'No relevant documents to query (for chatting with LLM, pick Resources->Collections->LLM).' if num_docs_before_cut else 'No documents to query (for chatting with LLM, pick Resources->Collections->LLM).'
-            extra = ''
-            yield dict(prompt=prompt_basic, response=ret, sources=extra, num_prompt_tokens=0)
-            return
-
-    if chain is None and not langchain_only_model:
-        # here if no docs at all and not HF type
-        # can only return if HF type
-        return
-
-    # context stuff similar to used in evaluate()
-    import torch
-    device, torch_dtype, context_class = get_device_dtype()
-    conditional_type = hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'model') and hasattr(llm.pipeline.model,
-                                                                                               'conditional_type') and llm.pipeline.model.conditional_type
-    with torch.no_grad():
-        have_lora_weights = lora_weights not in [no_lora_str, '', None]
-        context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast
-        if conditional_type:
-            # issues when casting to float16, can mess up t5 model, e.g. only when not streaming, or other odd behaviors
-            context_class_cast = NullContext
-        with context_class_cast(device):
-            if stream_output and streamer:
-                answer = None
-                import queue
-                bucket = queue.Queue()
-                thread = EThread(target=chain, streamer=streamer, bucket=bucket)
-                thread.start()
-                outputs = ""
-                try:
-                    for new_text in streamer:
-                        # print("new_text: %s" % new_text, flush=True)
-                        if bucket.qsize() > 0 or thread.exc:
-                            thread.join()
-                        outputs += new_text
-                        if prompter:  # and False:  # FIXME: pipeline can already use prompter
-                            if conditional_type:
-                                if prompter.botstr:
-                                    prompt = prompter.botstr
-                                    output_with_prompt = prompt + outputs
-                                    only_new_text = False
-                                else:
-                                    prompt = None
-                                    output_with_prompt = outputs
-                                    only_new_text = True
-                            else:
-                                prompt = None  # FIXME
-                                output_with_prompt = outputs
-                                # don't specify only_new_text here, use get_llm() value
-                            output1 = prompter.get_response(output_with_prompt, prompt=prompt,
-                                                            only_new_text=only_new_text,
-                                                            sanitize_bot_response=sanitize_bot_response)
-                            yield dict(prompt=prompt, response=output1, sources='', num_prompt_tokens=0)
-                        else:
-                            yield dict(prompt=prompt, response=outputs, sources='', num_prompt_tokens=0)
-                except BaseException:
-                    # if any exception, raise that exception if was from thread, first
-                    if thread.exc:
-                        raise thread.exc
-                    raise
-                finally:
-                    # in case no exception and didn't join with thread yet, then join
-                    if not thread.exc:
-                        answer = thread.join()
-                        if isinstance(answer, dict):
-                            if 'output_text' in answer:
-                                answer = answer['output_text']
-                            elif 'output' in answer:
-                                answer = answer['output']
-                # in case raise StopIteration or broke queue loop in streamer, but still have exception
-                if thread.exc:
-                    raise thread.exc
-            else:
-                if async_output:
-                    import asyncio
-                    answer = asyncio.run(chain())
-                else:
-                    answer = chain()
-                    if isinstance(answer, dict):
-                        if 'output_text' in answer:
-                            answer = answer['output_text']
-                        elif 'output' in answer:
-                            answer = answer['output']
-
-    get_answer_args = tuple([query, docs, answer, scores, show_rank,
-                             answer_with_sources,
-                             append_sources_to_answer])
-    get_answer_kwargs = dict(show_accordions=show_accordions,
-                             show_link_in_sources=show_link_in_sources,
-                             top_k_docs_max_show=top_k_docs_max_show,
-                             docs_ordering_type=docs_ordering_type,
-                             num_docs_before_cut=num_docs_before_cut,
-                             verbose=verbose,
-                             t_run=t_run,
-                             count_input_tokens=llm.count_input_tokens
-                             if hasattr(llm, 'count_input_tokens') else None,
-                             count_output_tokens=llm.count_output_tokens
-                             if hasattr(llm, 'count_output_tokens') else None)
-
-    t_run = time.time() - t_run
-
-    # for final yield, get real prompt used
-    if hasattr(llm, 'prompter') and llm.prompter.prompt is not None:
-        prompt = llm.prompter.prompt
-    else:
-        prompt = prompt_basic
-    num_prompt_tokens = get_token_count(prompt, tokenizer)
-
-    if not use_docs_planned:
-        ret = answer
-        extra = ''
-        yield dict(prompt=prompt, response=ret, sources=extra, num_prompt_tokens=num_prompt_tokens)
-    elif answer is not None:
-        ret, extra = get_sources_answer(*get_answer_args, **get_answer_kwargs)
-        yield dict(prompt=prompt, response=ret, sources=extra, num_prompt_tokens=num_prompt_tokens)
-    return
-
-
-def get_docs_with_score(query, k_db, filter_kwargs, db, db_type, text_context_list=None, verbose=False):
-    docs_with_score = []
-    got_db_docs = False
-
-    if text_context_list:
-        docs_with_score += [(x, x.metadata.get('score', 1.0)) for x in text_context_list]
-
-    # deal with bug in chroma where if (say) 234 doc chunks and ask for 233+ then fails due to reduction misbehavior
-    if hasattr(db, '_embedding_function') and isinstance(db._embedding_function, FakeEmbeddings):
-        top_k_docs = -1
-        # don't add text_context_list twice
-        db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs,
-                                                       text_context_list=None)
-        # sort by order given to parser (file_id) and any chunk_id if chunked
-        doc_file_ids = [x.get('file_id', 0) for x in db_metadatas]
-        doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
-        docs_with_score_fake = [(Document(page_content=result[0], metadata=result[1] or {}), 1.0)
-                                for result in zip(db_documents, db_metadatas)]
-        docs_with_score_fake = [x for fx, cx, x in
-                                sorted(zip(doc_file_ids, doc_chunk_ids, docs_with_score_fake),
-                                       key=lambda x: (x[0], x[1]))
-                                ]
-        got_db_docs |= len(docs_with_score_fake) > 0
-        docs_with_score += docs_with_score_fake
-    elif db is not None and db_type in ['chroma', 'chroma_old']:
-        while True:
-            try:
-                docs_with_score_chroma = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)
-                break
-            except (RuntimeError, AttributeError) as e:
-                # AttributeError is for people with wrong version of langchain
-                if verbose:
-                    print("chroma bug: %s" % str(e), flush=True)
-                if k_db == 1:
-                    raise
-                if k_db > 500:
-                    k_db -= 200
-                elif k_db > 100:
-                    k_db -= 50
-                elif k_db > 10:
-                    k_db -= 5
-                else:
-                    k_db -= 1
-                k_db = max(1, k_db)
-        got_db_docs |= len(docs_with_score_chroma) > 0
-        docs_with_score += docs_with_score_chroma
-    elif db is not None:
-        docs_with_score_other = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)
-        got_db_docs |= len(docs_with_score_other) > 0
-        docs_with_score += docs_with_score_other
-
-    # set in metadata original order of docs
-    [x[0].metadata.update(orig_index=ii) for ii, x in enumerate(docs_with_score)]
-
-    return docs_with_score, got_db_docs
-
-
-def get_chain(query=None,
-              iinput=None,
-              context=None,  # FIXME: https://github.com/hwchase17/langchain/issues/6638
-              use_openai_model=False, use_openai_embedding=False,
-              first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
-
-              # urls
-              use_unstructured=True,
-              use_playwright=False,
-              use_selenium=False,
-
-              # pdfs
-              use_pymupdf='auto',
-              use_unstructured_pdf='auto',
-              use_pypdf='auto',
-              enable_pdf_ocr='auto',
-              enable_pdf_doctr='auto',
-              try_pdf_as_html='auto',
-
-              # images
-              enable_ocr=False,
-              enable_doctr=False,
-              enable_pix2struct=False,
-              enable_captions=True,
-              captions_model=None,
-              caption_loader=None,
-              doctr_loader=None,
-              pix2struct_loader=None,
-
-              # json
-              jq_schema='.[]',
-
-              langchain_mode_paths=None,
-              langchain_mode_types=None,
-              detect_user_path_changes_every_query=False,
-              db_type='faiss',
-              model_name=None,
-              inference_server='',
-              max_new_tokens=None,
-              langchain_only_model=False,
-              hf_embedding_model=None,
-              migrate_embedding_model=False,
-              auto_migrate_db=False,
-              prompter=None,
-              prompt_type=None,
-              prompt_dict=None,
-              system_prompt=None,
-              cut_distance=1.1,
-              add_chat_history_to_context=True,  # FIXME: https://github.com/hwchase17/langchain/issues/6638
-              add_search_to_context=False,
-              keep_sources_in_context=False,
-              memory_restriction_level=0,
-              top_k_docs_max_show=10,
-
-              load_db_if_exists=False,
-              db=None,
-              langchain_mode=None,
-              langchain_action=None,
-              langchain_agents=None,
-              document_subset=DocumentSubset.Relevant.name,
-              document_choice=[DocumentChoice.ALL.value],
-              pre_prompt_query=None,
-              prompt_query=None,
-              pre_prompt_summary=None,
-              prompt_summary=None,
-              text_context_list=None,
-              chat_conversation=None,
-
-              n_jobs=-1,
-              # beyond run_db_query:
-              llm=None,
-              tokenizer=None,
-              verbose=False,
-              docs_ordering_type='reverse_ucurve_sort',
-              min_max_new_tokens=256,
-              stream_output=True,
-              async_output=True,
-
-              # local
-              auto_reduce_chunks=True,
-              max_chunks=100,
-              total_tokens_for_docs=None,
-              use_llm_if_no_docs=None,
-              headsize=50,
-              ):
-    if inference_server is None:
-        inference_server = ''
-    assert hf_embedding_model is not None
-    assert langchain_agents is not None  # should be at least []
-    if text_context_list is None:
-        text_context_list = []
-
-    # default value:
-    llm_mode = langchain_mode in ['Disabled', 'LLM'] and len(text_context_list) == 0
-    query_action = langchain_action == LangChainAction.QUERY.value
-    summarize_action = langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
-                                            LangChainAction.SUMMARIZE_ALL.value,
-                                            LangChainAction.SUMMARIZE_REFINE.value]
-
-    if len(text_context_list) > 0:
-        # turn into documents to make easy to manage and add meta
-        # try to account for summarization vs. query
-        chunk_id = 0 if query_action else -1
-        text_context_list = [
-            Document(page_content=x, metadata=dict(source='text_context_list', score=1.0, chunk_id=chunk_id)) for x
-            in text_context_list]
-
-    if add_search_to_context:
-        params = {
-            "engine": "duckduckgo",
-            "gl": "us",
-            "hl": "en",
-        }
-        search = H2OSerpAPIWrapper(params=params)
-        # if doing search, allow more docs
-        docs_search, top_k_docs = search.get_search_documents(query,
-                                                              query_action=query_action,
-                                                              chunk=chunk, chunk_size=chunk_size,
-                                                              db_type=db_type,
-                                                              headsize=headsize,
-                                                              top_k_docs=top_k_docs)
-        text_context_list = docs_search + text_context_list
-        add_search_to_context &= len(docs_search) > 0
-        top_k_docs_max_show = max(top_k_docs_max_show, len(docs_search))
-
-    if len(text_context_list) > 0:
-        llm_mode = False
-    use_llm_if_no_docs = True
-
-    from src.output_parser import H2OMRKLOutputParser
-    from langchain.agents import AgentType, load_tools, initialize_agent, create_vectorstore_agent, \
-        create_pandas_dataframe_agent, create_json_agent, create_csv_agent
-    from langchain.agents.agent_toolkits import VectorStoreInfo, VectorStoreToolkit, create_python_agent, JsonToolkit
-    if LangChainAgent.SEARCH.value in langchain_agents:
-        output_parser = H2OMRKLOutputParser()
-        tools = load_tools(["serpapi"], llm=llm, serpapi_api_key=os.environ.get('SERPAPI_API_KEY'))
-        if inference_server.startswith('openai'):
-            agent_type = AgentType.OPENAI_FUNCTIONS
-            agent_executor_kwargs = {"handle_parsing_errors": True, 'output_parser': output_parser}
-        else:
-            agent_type = AgentType.ZERO_SHOT_REACT_DESCRIPTION
-            agent_executor_kwargs = {'output_parser': output_parser}
-        chain = initialize_agent(tools, llm, agent=agent_type,
-                                 agent_executor_kwargs=agent_executor_kwargs,
-                                 agent_kwargs=dict(output_parser=output_parser,
-                                                   format_instructions=output_parser.get_format_instructions()),
-                                 output_parser=output_parser,
-                                 max_iterations=10,
-                                 verbose=True)
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if LangChainAgent.COLLECTION.value in langchain_agents:
-        output_parser = H2OMRKLOutputParser()
-        vectorstore_info = VectorStoreInfo(
-            name=langchain_mode,
-            description="DataBase of text from PDFs, Image Captions, or web URL content",
-            vectorstore=db,
-        )
-        toolkit = VectorStoreToolkit(vectorstore_info=vectorstore_info)
-        chain = create_vectorstore_agent(llm=llm, toolkit=toolkit,
-                                         agent_executor_kwargs=dict(output_parser=output_parser),
-                                         verbose=True)
-
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if LangChainAgent.PYTHON.value in langchain_agents and inference_server.startswith('openai'):
-        chain = create_python_agent(
-            llm=llm,
-            tool=PythonREPLTool(),
-            verbose=True,
-            agent_type=AgentType.OPENAI_FUNCTIONS,
-            agent_executor_kwargs={"handle_parsing_errors": True},
-        )
-
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if LangChainAgent.PANDAS.value in langchain_agents and inference_server.startswith('openai_chat'):
-        # FIXME: DATA
-        df = pd.DataFrame(None)
-        chain = create_pandas_dataframe_agent(
-            llm,
-            df,
-            verbose=True,
-            agent_type=AgentType.OPENAI_FUNCTIONS,
-        )
-
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if isinstance(document_choice, str):
-        document_choice = [document_choice]
-    if document_choice and document_choice[0] == DocumentChoice.ALL.value:
-        document_choice_agent = document_choice[1:]
-    else:
-        document_choice_agent = document_choice
-    document_choice_agent = [x for x in document_choice_agent if x.endswith('.json')]
-    if LangChainAgent.JSON.value in \
-            langchain_agents and \
-            inference_server.startswith('openai_chat') and \
-            len(document_choice_agent) == 1 and \
-            document_choice_agent[0].endswith('.json'):
-        # with open('src/openai.yaml') as f:
-        #    data = yaml.load(f, Loader=yaml.FullLoader)
-        with open(document_choice[0], 'rt') as f:
-            data = json.loads(f.read())
-        json_spec = JsonSpec(dict_=data, max_value_length=4000)
-        json_toolkit = JsonToolkit(spec=json_spec)
-
-        chain = create_json_agent(
-            llm=llm, toolkit=json_toolkit, verbose=True
-        )
-
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if isinstance(document_choice, str):
-        document_choice = [document_choice]
-    if document_choice and document_choice[0] == DocumentChoice.ALL.value:
-        document_choice_agent = document_choice[1:]
-    else:
-        document_choice_agent = document_choice
-    document_choice_agent = [x for x in document_choice_agent if x.endswith('.csv')]
-    if LangChainAgent.CSV.value in langchain_agents and len(document_choice_agent) == 1 and document_choice_agent[
-        0].endswith(
-            '.csv'):
-        data_file = document_choice[0]
-        if inference_server.startswith('openai_chat'):
-            chain = create_csv_agent(
-                llm,
-                data_file,
-                verbose=True,
-                agent_type=AgentType.OPENAI_FUNCTIONS,
-            )
-        else:
-            chain = create_csv_agent(
-                llm,
-                data_file,
-                verbose=True,
-                agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
-            )
-        chain_kwargs = dict(input=query)
-        target = wrapped_partial(chain, chain_kwargs)
-
-        docs = []
-        scores = []
-        use_docs_planned = False
-        num_docs_before_cut = 0
-        use_llm_if_no_docs = True
-        return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    # determine whether use of context out of docs is planned
-    if not use_openai_model and prompt_type not in ['plain'] or langchain_only_model:
-        if llm_mode:
-            use_docs_planned = False
-        else:
-            use_docs_planned = True
-    else:
-        use_docs_planned = True
-
-    # https://github.com/hwchase17/langchain/issues/1946
-    # FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
-    # Chroma collection MyData contains fewer than 4 elements.
-    # type logger error
-    if top_k_docs == -1:
-        k_db = 1000 if db_type in ['chroma', 'chroma_old'] else 100
-    else:
-        # top_k_docs=100 works ok too
-        k_db = 1000 if db_type in ['chroma', 'chroma_old'] else top_k_docs
-
-    # FIXME: For All just go over all dbs instead of a separate db for All
-    if not detect_user_path_changes_every_query and db is not None:
-        # avoid looking at user_path during similarity search db handling,
-        # if already have db and not updating from user_path every query
-        # but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
-        if langchain_mode_paths is None:
-            langchain_mode_paths = {}
-        langchain_mode_paths = langchain_mode_paths.copy()
-        langchain_mode_paths[langchain_mode] = None
-    # once use_openai_embedding, hf_embedding_model passed in, possibly changed,
-    # but that's ok as not used below or in calling functions
-    db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
-                                                        hf_embedding_model=hf_embedding_model,
-                                                        migrate_embedding_model=migrate_embedding_model,
-                                                        auto_migrate_db=auto_migrate_db,
-                                                        first_para=first_para, text_limit=text_limit,
-                                                        chunk=chunk, chunk_size=chunk_size,
-
-                                                        # urls
-                                                        use_unstructured=use_unstructured,
-                                                        use_playwright=use_playwright,
-                                                        use_selenium=use_selenium,
-
-                                                        # pdfs
-                                                        use_pymupdf=use_pymupdf,
-                                                        use_unstructured_pdf=use_unstructured_pdf,
-                                                        use_pypdf=use_pypdf,
-                                                        enable_pdf_ocr=enable_pdf_ocr,
-                                                        enable_pdf_doctr=enable_pdf_doctr,
-                                                        try_pdf_as_html=try_pdf_as_html,
-
-                                                        # images
-                                                        enable_ocr=enable_ocr,
-                                                        enable_doctr=enable_doctr,
-                                                        enable_pix2struct=enable_pix2struct,
-                                                        enable_captions=enable_captions,
-                                                        captions_model=captions_model,
-                                                        caption_loader=caption_loader,
-                                                        doctr_loader=doctr_loader,
-                                                        pix2struct_loader=pix2struct_loader,
-
-                                                        # json
-                                                        jq_schema=jq_schema,
-
-                                                        langchain_mode=langchain_mode,
-                                                        langchain_mode_paths=langchain_mode_paths,
-                                                        langchain_mode_types=langchain_mode_types,
-                                                        db_type=db_type,
-                                                        load_db_if_exists=load_db_if_exists,
-                                                        db=db,
-                                                        n_jobs=n_jobs,
-                                                        verbose=verbose)
-    num_docs_before_cut = 0
-    use_template = not use_openai_model and prompt_type not in ['plain'] or langchain_only_model
-    got_db_docs = False  # not yet at least
-    template, template_if_no_docs, auto_reduce_chunks, query = \
-        get_template(query, iinput,
-                     pre_prompt_query, prompt_query,
-                     pre_prompt_summary, prompt_summary,
-                     langchain_action,
-                     llm_mode,
-                     use_docs_planned,
-                     auto_reduce_chunks,
-                     got_db_docs,
-                     add_search_to_context)
-
-    max_input_tokens = get_max_input_tokens(llm=llm, tokenizer=tokenizer, inference_server=inference_server,
-                                            model_name=model_name, max_new_tokens=max_new_tokens)
-
-    if (db or text_context_list) and use_docs_planned:
-        if hasattr(db, '_persist_directory'):
-            lock_file = get_db_lock_file(db, lock_type='sim')
-        else:
-            base_path = 'locks'
-            base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
-            name_path = "sim.lock"
-            lock_file = os.path.join(base_path, name_path)
-
-        if not (isinstance(db, Chroma) or isinstance(db, ChromaMig) or ChromaMig.__name__ in str(db)):
-            # only chroma supports filtering
-            filter_kwargs = {}
-            filter_kwargs_backup = {}
-        else:
-            import logging
-            logging.getLogger("chromadb").setLevel(logging.ERROR)
-            assert document_choice is not None, "Document choice was None"
-            if isinstance(db, Chroma):
-                filter_kwargs_backup = {}  # shouldn't ever need backup
-                # chroma >= 0.4
-                if len(document_choice) == 0 or len(document_choice) >= 1 and document_choice[
-                    0] == DocumentChoice.ALL.value:
-                    filter_kwargs = {"filter": {"chunk_id": {"$gte": 0}}} if query_action else \
-                        {"filter": {"chunk_id": {"$eq": -1}}}
-                else:
-                    if document_choice[0] == DocumentChoice.ALL.value:
-                        document_choice = document_choice[1:]
-                    if len(document_choice) == 0:
-                        filter_kwargs = {}
-                    elif len(document_choice) > 1:
-                        or_filter = [
-                            {"$and": [dict(source={"$eq": x}), dict(chunk_id={"$gte": 0})]} if query_action else {
-                                "$and": [dict(source={"$eq": x}), dict(chunk_id={"$eq": -1})]}
-                            for x in document_choice]
-                        filter_kwargs = dict(filter={"$or": or_filter})
-                    else:
-                        # still chromadb UX bug, have to do different thing for 1 vs. 2+ docs when doing filter
-                        one_filter = \
-                            [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {
-                                "source": {"$eq": x},
-                                "chunk_id": {
-                                    "$eq": -1}}
-                             for x in document_choice][0]
-
-                        filter_kwargs = dict(filter={"$and": [dict(source=one_filter['source']),
-                                                              dict(chunk_id=one_filter['chunk_id'])]})
-            else:
-                # migration for chroma < 0.4
-                if len(document_choice) == 0 or len(document_choice) >= 1 and document_choice[
-                    0] == DocumentChoice.ALL.value:
-                    filter_kwargs = {"filter": {"chunk_id": {"$gte": 0}}} if query_action else \
-                        {"filter": {"chunk_id": {"$eq": -1}}}
-                    filter_kwargs_backup = {"filter": {"chunk_id": {"$gte": 0}}}
-                elif len(document_choice) >= 2:
-                    if document_choice[0] == DocumentChoice.ALL.value:
-                        document_choice = document_choice[1:]
-                    or_filter = [
-                        {"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x},
-                                                                                              "chunk_id": {
-                                                                                                  "$eq": -1}}
-                        for x in document_choice]
-                    filter_kwargs = dict(filter={"$or": or_filter})
-                    or_filter_backup = [
-                        {"source": {"$eq": x}} if query_action else {"source": {"$eq": x}}
-                        for x in document_choice]
-                    filter_kwargs_backup = dict(filter={"$or": or_filter_backup})
-                elif len(document_choice) == 1:
-                    # degenerate UX bug in chroma
-                    one_filter = \
-                        [{"source": {"$eq": x}, "chunk_id": {"$gte": 0}} if query_action else {"source": {"$eq": x},
-                                                                                               "chunk_id": {
-                                                                                                   "$eq": -1}}
-                         for x in document_choice][0]
-                    filter_kwargs = dict(filter=one_filter)
-                    one_filter_backup = \
-                        [{"source": {"$eq": x}} if query_action else {"source": {"$eq": x}}
-                         for x in document_choice][0]
-                    filter_kwargs_backup = dict(filter=one_filter_backup)
-                else:
-                    # shouldn't reach
-                    filter_kwargs = {}
-                    filter_kwargs_backup = {}
-
-        if llm_mode:
-            docs = []
-            scores = []
-        elif document_subset == DocumentSubset.TopKSources.name or query in [None, '', '\n']:
-            db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs,
-                                                           text_context_list=text_context_list)
-            if len(db_documents) == 0 and filter_kwargs_backup:
-                db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs_backup,
-                                                               text_context_list=text_context_list)
-
-            if top_k_docs == -1:
-                top_k_docs = len(db_documents)
-            # similar to langchain's chroma's _results_to_docs_and_scores
-            docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
-                               for result in zip(db_documents, db_metadatas)]
-            # set in metadata original order of docs
-            [x[0].metadata.update(orig_index=ii) for ii, x in enumerate(docs_with_score)]
-
-            # order documents
-            doc_hashes = [x.get('doc_hash', 'None') for x in db_metadatas]
-            if query_action:
-                doc_chunk_ids = [x.get('chunk_id', 0) for x in db_metadatas]
-                docs_with_score2 = [x for hx, cx, x in
-                                    sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
-                                    if cx >= 0]
-            else:
-                assert summarize_action
-                doc_chunk_ids = [x.get('chunk_id', -1) for x in db_metadatas]
-                docs_with_score2 = [x for hx, cx, x in
-                                    sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score), key=lambda x: (x[0], x[1]))
-                                    if cx == -1
-                                    ]
-                if len(docs_with_score2) == 0 and len(docs_with_score) > 0:
-                    # old database without chunk_id, migration added 0 but didn't make -1 as that would be expensive
-                    # just do again and relax filter, let summarize operate on actual chunks if nothing else
-                    docs_with_score2 = [x for hx, cx, x in
-                                        sorted(zip(doc_hashes, doc_chunk_ids, docs_with_score),
-                                               key=lambda x: (x[0], x[1]))
-                                        ]
-            docs_with_score = docs_with_score2
-
-            docs_with_score = docs_with_score[:top_k_docs]
-            docs = [x[0] for x in docs_with_score]
-            scores = [x[1] for x in docs_with_score]
-            num_docs_before_cut = len(docs)
-        else:
-            with filelock.FileLock(lock_file):
-                docs_with_score, got_db_docs = get_docs_with_score(query, k_db, filter_kwargs, db, db_type,
-                                                                   text_context_list=text_context_list,
-                                                                   verbose=verbose)
-                if len(docs_with_score) == 0 and filter_kwargs_backup:
-                    docs_with_score, got_db_docs = get_docs_with_score(query, k_db, filter_kwargs_backup, db,
-                                                                       db_type,
-                                                                       text_context_list=text_context_list,
-                                                                       verbose=verbose)
-
-            tokenizer = get_tokenizer(db=db, llm=llm, tokenizer=tokenizer, inference_server=inference_server,
-                                      use_openai_model=use_openai_model,
-                                      db_type=db_type)
-            # NOTE: if map_reduce, then no need to auto reduce chunks
-            if query_action and (top_k_docs == -1 or auto_reduce_chunks):
-                top_k_docs_tokenize = 100
-                docs_with_score = docs_with_score[:top_k_docs_tokenize]
-
-                prompt_no_docs = template.format(context='', question=query)
-
-                model_max_length = tokenizer.model_max_length
-                chat = True  # FIXME?
-
-                # first docs_with_score are most important with highest score
-                full_prompt, \
-                    instruction, iinput, context, \
-                    num_prompt_tokens, max_new_tokens, \
-                    num_prompt_tokens0, num_prompt_tokens_actual, \
-                    chat_index, top_k_docs_trial, one_doc_size = \
-                    get_limited_prompt(prompt_no_docs,
-                                       iinput,
-                                       tokenizer,
-                                       prompter=prompter,
-                                       inference_server=inference_server,
-                                       prompt_type=prompt_type,
-                                       prompt_dict=prompt_dict,
-                                       chat=chat,
-                                       max_new_tokens=max_new_tokens,
-                                       system_prompt=system_prompt,
-                                       context=context,
-                                       chat_conversation=chat_conversation,
-                                       text_context_list=[x[0].page_content for x in docs_with_score],
-                                       keep_sources_in_context=keep_sources_in_context,
-                                       model_max_length=model_max_length,
-                                       memory_restriction_level=memory_restriction_level,
-                                       langchain_mode=langchain_mode,
-                                       add_chat_history_to_context=add_chat_history_to_context,
-                                       min_max_new_tokens=min_max_new_tokens,
-                                       )
-                # avoid craziness
-                if 0 < top_k_docs_trial < max_chunks:
-                    # avoid craziness
-                    if top_k_docs == -1:
-                        top_k_docs = top_k_docs_trial
-                    else:
-                        top_k_docs = min(top_k_docs, top_k_docs_trial)
-                elif top_k_docs_trial >= max_chunks:
-                    top_k_docs = max_chunks
-                if top_k_docs > 0:
-                    docs_with_score = docs_with_score[:top_k_docs]
-                elif one_doc_size is not None:
-                    docs_with_score = [docs_with_score[0][:one_doc_size]]
-                else:
-                    docs_with_score = []
-            else:
-                if total_tokens_for_docs is not None:
-                    # used to limit tokens for summarization, e.g. public instance
-                    top_k_docs, one_doc_size, num_doc_tokens = \
-                        get_docs_tokens(tokenizer,
-                                        text_context_list=[x[0].page_content for x in docs_with_score],
-                                        max_input_tokens=total_tokens_for_docs)
-
-                docs_with_score = docs_with_score[:top_k_docs]
-
-            # put most relevant chunks closest to question,
-            # esp. if truncation occurs will be "oldest" or "farthest from response" text that is truncated
-            # BUT: for small models, e.g. 6_9 pythia, if sees some stuff related to h2oGPT first, it can connect that and not listen to rest
-            if docs_ordering_type in ['best_first']:
-                pass
-            elif docs_ordering_type in ['best_near_prompt', 'reverse_sort']:
-                docs_with_score.reverse()
-            elif docs_ordering_type in ['', None, 'reverse_ucurve_sort']:
-                docs_with_score = reverse_ucurve_list(docs_with_score)
-            else:
-                raise ValueError("No such docs_ordering_type=%s" % docs_ordering_type)
-
-            # cut off so no high distance docs/sources considered
-            num_docs_before_cut = len(docs_with_score)
-            docs = [x[0] for x in docs_with_score if x[1] < cut_distance]
-            scores = [x[1] for x in docs_with_score if x[1] < cut_distance]
-            if len(scores) > 0 and verbose:
-                print("Distance: min: %s max: %s mean: %s median: %s" %
-                      (scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
-    else:
-        docs = []
-        scores = []
-
-    if not docs and use_docs_planned and not langchain_only_model:
-        # if HF type and have no docs, can bail out
-        return docs, None, [], False, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    if document_subset in non_query_commands:
-        # no LLM use
-        return docs, None, [], False, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-    # FIXME: WIP
-    common_words_file = "data/NGSL_1.2_stats.csv.zip"
-    if False and os.path.isfile(common_words_file) and langchain_action == LangChainAction.QUERY.value:
-        df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
-        import string
-        reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
-        reduced_query_words = reduced_query.split(' ')
-        set_common = set(df['Lemma'].values.tolist())
-        num_common = len([x.lower() in set_common for x in reduced_query_words])
-        frac_common = num_common / len(reduced_query) if reduced_query else 0
-        # FIXME: report to user bad query that uses too many common words
-        if verbose:
-            print("frac_common: %s" % frac_common, flush=True)
-
-    if len(docs) == 0:
-        # avoid context == in prompt then
-        use_docs_planned = False
-        template = template_if_no_docs
-
-    got_db_docs = got_db_docs and len(text_context_list) < len(docs)
-    # update template in case situation changed or did get docs
-    # then no new documents from database or not used, redo template
-    # got template earlier as estimate of template token size, here is final used version
-    template, template_if_no_docs, auto_reduce_chunks, query = \
-        get_template(query, iinput,
-                     pre_prompt_query, prompt_query,
-                     pre_prompt_summary, prompt_summary,
-                     langchain_action,
-                     llm_mode,
-                     use_docs_planned,
-                     auto_reduce_chunks,
-                     got_db_docs,
-                     add_search_to_context)
-
-    if langchain_action == LangChainAction.QUERY.value:
-        if use_template:
-            # instruct-like, rather than few-shot prompt_type='plain' as default
-            # but then sources confuse the model with how inserted among rest of text, so avoid
-            prompt = PromptTemplate(
-                # input_variables=["summaries", "question"],
-                input_variables=["context", "question"],
-                template=template,
-            )
-            chain = load_qa_chain(llm, prompt=prompt, verbose=verbose)
-        else:
-            # only if use_openai_model = True, unused normally except in testing
-            chain = load_qa_with_sources_chain(llm)
-        if not use_docs_planned:
-            chain_kwargs = dict(input_documents=[], question=query)
-        else:
-            chain_kwargs = dict(input_documents=docs, question=query)
-        target = wrapped_partial(chain, chain_kwargs)
-    elif langchain_action in [LangChainAction.SUMMARIZE_MAP.value,
-                              LangChainAction.SUMMARIZE_REFINE,
-                              LangChainAction.SUMMARIZE_ALL.value]:
-        if async_output:
-            return_intermediate_steps = False
-        else:
-            return_intermediate_steps = True
-        from langchain.chains.summarize import load_summarize_chain
-        if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
-            prompt = PromptTemplate(input_variables=["text"], template=template)
-            chain = load_summarize_chain(llm, chain_type="map_reduce",
-                                         map_prompt=prompt, combine_prompt=prompt,
-                                         return_intermediate_steps=return_intermediate_steps,
-                                         token_max=max_input_tokens, verbose=verbose)
-            if async_output:
-                chain_func = chain.arun
-            else:
-                chain_func = chain
-            target = wrapped_partial(chain_func, {"input_documents": docs})  # , return_only_outputs=True)
-        elif langchain_action == LangChainAction.SUMMARIZE_ALL.value:
-            assert use_template
-            prompt = PromptTemplate(input_variables=["text"], template=template)
-            chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt,
-                                         return_intermediate_steps=return_intermediate_steps, verbose=verbose)
-            if async_output:
-                chain_func = chain.arun
-            else:
-                chain_func = chain
-            target = wrapped_partial(chain_func)
-        elif langchain_action == LangChainAction.SUMMARIZE_REFINE.value:
-            chain = load_summarize_chain(llm, chain_type="refine",
-                                         return_intermediate_steps=return_intermediate_steps, verbose=verbose)
-            if async_output:
-                chain_func = chain.arun
-            else:
-                chain_func = chain
-            target = wrapped_partial(chain_func)
-        else:
-            raise RuntimeError("No such langchain_action=%s" % langchain_action)
-    else:
-        raise RuntimeError("No such langchain_action=%s" % langchain_action)
-
-    return docs, target, scores, use_docs_planned, num_docs_before_cut, use_llm_if_no_docs, llm_mode, top_k_docs_max_show
-
-
-def get_max_model_length(llm=None, tokenizer=None, inference_server=None, model_name=None):
-    if hasattr(tokenizer, 'model_max_length'):
-        return tokenizer.model_max_length
-    elif inference_server in ['openai', 'openai_azure']:
-        return llm.modelname_to_contextsize(model_name)
-    elif inference_server in ['openai_chat', 'openai_azure_chat']:
-        return model_token_mapping[model_name]
-    elif isinstance(tokenizer, FakeTokenizer):
-        # GGML
-        return tokenizer.model_max_length
-    else:
-        return 2048
-
-
-def get_max_input_tokens(llm=None, tokenizer=None, inference_server=None, model_name=None, max_new_tokens=None):
-    model_max_length = get_max_model_length(llm=llm, tokenizer=tokenizer, inference_server=inference_server,
-                                            model_name=model_name)
-
-    if any([inference_server.startswith(x) for x in
-            ['openai', 'openai_azure', 'openai_chat', 'openai_azure_chat', 'vllm']]):
-        # openai can't handle tokens + max_new_tokens > max_tokens even if never generate those tokens
-        # and vllm uses OpenAI API with same limits
-        max_input_tokens = model_max_length - max_new_tokens
-    elif isinstance(tokenizer, FakeTokenizer):
-        # don't trust that fake tokenizer (e.g. GGML) will make lots of tokens normally, allow more input
-        max_input_tokens = model_max_length - min(256, max_new_tokens)
-    else:
-        if 'falcon' in model_name or inference_server.startswith('http'):
-            # allow for more input for falcon, assume won't make as long outputs as default max_new_tokens
-            # Also allow if TGI or Gradio, because we tell it input may be same as output, even if model can't actually handle
-            max_input_tokens = model_max_length - min(256, max_new_tokens)
-        else:
-            # trust that maybe model will make so many tokens, so limit input
-            max_input_tokens = model_max_length - max_new_tokens
-
-    return max_input_tokens
-
-
-def get_tokenizer(db=None, llm=None, tokenizer=None, inference_server=None, use_openai_model=False,
-                  db_type='chroma'):
-    if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'):
-        # more accurate
-        return llm.pipeline.tokenizer
-    elif hasattr(llm, 'tokenizer'):
-        # e.g. TGI client mode etc.
-        return llm.tokenizer
-    elif inference_server in ['openai', 'openai_chat', 'openai_azure',
-                              'openai_azure_chat']:
-        return tokenizer
-    elif isinstance(tokenizer, FakeTokenizer):
-        return tokenizer
-    elif use_openai_model:
-        return FakeTokenizer()
-    elif (hasattr(db, '_embedding_function') and
-          hasattr(db._embedding_function, 'client') and
-          hasattr(db._embedding_function.client, 'tokenize')):
-        # in case model is not our pipeline with HF tokenizer
-        return db._embedding_function.client.tokenize
-    else:
-        # backup method
-        if os.getenv('HARD_ASSERTS'):
-            assert db_type in ['faiss', 'weaviate']
-        # use tiktoken for faiss since embedding called differently
-        return FakeTokenizer()
-
-
-def get_template(query, iinput,
-                 pre_prompt_query, prompt_query,
-                 pre_prompt_summary, prompt_summary,
-                 langchain_action,
-                 llm_mode,
-                 use_docs_planned,
-                 auto_reduce_chunks,
-                 got_db_docs,
-                 add_search_to_context):
-    if got_db_docs and add_search_to_context:
-        # modify prompts, assumes patterns like in predefined prompts.  If user customizes, then they'd need to account for that.
-        prompt_query = prompt_query.replace('information in the document sources',
-                                            'information in the document and web search sources (and their source dates and website source)')
-        prompt_summary = prompt_summary.replace('information in the document sources',
-                                                'information in the document and web search sources (and their source dates and website source)')
-    elif got_db_docs and not add_search_to_context:
-        pass
-    elif not got_db_docs and add_search_to_context:
-        # modify prompts, assumes patterns like in predefined prompts.  If user customizes, then they'd need to account for that.
-        prompt_query = prompt_query.replace('information in the document sources',
-                                            'information in the web search sources (and their source dates and website source)')
-        prompt_summary = prompt_summary.replace('information in the document sources',
-                                                'information in the web search sources (and their source dates and website source)')
-
-    if langchain_action == LangChainAction.QUERY.value:
-        if iinput:
-            query = "%s\n%s" % (query, iinput)
-        if llm_mode or not use_docs_planned:
-            template_if_no_docs = template = """{context}{question}"""
-        else:
-            template = """%s
-\"\"\"
-{context}
-\"\"\"
-%s{question}""" % (pre_prompt_query, prompt_query)
-            template_if_no_docs = """{context}{question}"""
-    elif langchain_action in [LangChainAction.SUMMARIZE_ALL.value, LangChainAction.SUMMARIZE_MAP.value]:
-        none = ['', '\n', None]
-
-        # modify prompt_summary if user passes query or iinput
-        if query not in none and iinput not in none:
-            prompt_summary = "Focusing on %s, %s, %s" % (query, iinput, prompt_summary)
-        elif query not in none:
-            prompt_summary = "Focusing on %s, %s" % (query, prompt_summary)
-        # don't auto reduce
-        auto_reduce_chunks = False
-        if langchain_action == LangChainAction.SUMMARIZE_MAP.value:
-            fstring = '{text}'
-        else:
-            fstring = '{input_documents}'
-        template = """%s:
-\"\"\"
-%s
-\"\"\"\n%s""" % (pre_prompt_summary, fstring, prompt_summary)
-        template_if_no_docs = "Exactly only say: There are no documents to summarize."
-    elif langchain_action in [LangChainAction.SUMMARIZE_REFINE]:
-        template = ''  # unused
-        template_if_no_docs = ''  # unused
-    else:
-        raise RuntimeError("No such langchain_action=%s" % langchain_action)
-
-    return template, template_if_no_docs, auto_reduce_chunks, query
-
-
-def get_sources_answer(query, docs, answer, scores, show_rank,
-                       answer_with_sources, append_sources_to_answer,
-                       show_accordions=True,
-                       show_link_in_sources=True,
-                       top_k_docs_max_show=10,
-                       docs_ordering_type='reverse_ucurve_sort',
-                       num_docs_before_cut=0,
-                       verbose=False,
-                       t_run=None,
-                       count_input_tokens=None, count_output_tokens=None):
-    if verbose:
-        print("query: %s" % query, flush=True)
-        print("answer: %s" % answer, flush=True)
-
-    if len(docs) == 0:
-        extra = ''
-        ret = answer + extra
-        return ret, extra
-
-    if answer_with_sources == -1:
-        extra = [dict(score=score, content=get_doc(x), source=get_source(x), orig_index=x.metadata.get('orig_index', 0))
-                 for score, x in zip(scores, docs)][
-                :top_k_docs_max_show]
-        if append_sources_to_answer:
-            extra_str = [str(x) for x in extra]
-            ret = answer + '\n\n' + '\n'.join(extra_str)
-        else:
-            ret = answer
-        return ret, extra
-
-    # link
-    answer_sources = [(max(0.0, 1.5 - score) / 1.5,
-                       get_url(doc, font_size=font_size),
-                       get_accordion(doc, font_size=font_size, head_acc=head_acc)) for score, doc in
-                      zip(scores, docs)]
-    if not show_accordions:
-        answer_sources_dict = defaultdict(list)
-        [answer_sources_dict[url].append(score) for score, url in answer_sources]
-        answers_dict = {}
-        for url, scores_url in answer_sources_dict.items():
-            answers_dict[url] = np.max(scores_url)
-        answer_sources = [(score, url) for url, score in answers_dict.items()]
-    answer_sources.sort(key=lambda x: x[0], reverse=True)
-    if show_rank:
-        # answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
-        # sorted_sources_urls = "Sources [Rank | Link]:<br>" + "<br>".join(answer_sources)
-        answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
-        answer_sources = answer_sources[:top_k_docs_max_show]
-        sorted_sources_urls = "Ranked Sources:<br>" + "<br>".join(answer_sources)
-    else:
-        if show_accordions:
-            if show_link_in_sources:
-                answer_sources = ['<font size="%s"><li>%.2g | %s</li>%s</font>' % (font_size, score, url, accordion)
-                                  for score, url, accordion in answer_sources]
-            else:
-                answer_sources = ['<font size="%s"><li>%.2g</li>%s</font>' % (font_size, score, accordion)
-                                  for score, url, accordion in answer_sources]
-        else:
-            if show_link_in_sources:
-                answer_sources = ['<font size="%s"><li>%.2g | %s</li></font>' % (font_size, score, url)
-                                  for score, url in answer_sources]
-            else:
-                answer_sources = ['<font size="%s"><li>%.2g</li></font>' % (font_size, score)
-                                  for score, url in answer_sources]
-        answer_sources = answer_sources[:top_k_docs_max_show]
-        if show_accordions:
-            sorted_sources_urls = f"<font size=\"{font_size}\">{source_prefix}<ul></font>" + "".join(answer_sources)
-        else:
-            sorted_sources_urls = f"<font size=\"{font_size}\">{source_prefix}<p><ul></font>" + "<p>".join(
-                answer_sources)
-        if verbose:
-            if int(t_run):
-                sorted_sources_urls += 'Total Time: %d [s]<p>' % t_run
-            if count_input_tokens and count_output_tokens:
-                sorted_sources_urls += 'Input Tokens: %s | Output Tokens: %d<p>' % (
-                    count_input_tokens, count_output_tokens)
-        sorted_sources_urls += f"<font size=\"{font_size}\"></ul></p>{source_postfix}</font>"
-        title_overall = "Sources"
-        sorted_sources_urls = f"""<details><summary><font size="{font_size}">{title_overall}</font></summary><font size="{font_size}">{sorted_sources_urls}</font></details>"""
-        if os.getenv("HARD_ASSERTS"):
-            assert sorted_sources_urls.startswith(super_source_prefix)
-            assert sorted_sources_urls.endswith(super_source_postfix)
-
-    if not answer.endswith('\n'):
-        answer += '\n'
-
-    if answer_with_sources:
-        extra = '\n' + sorted_sources_urls
-    else:
-        extra = ''
-    if append_sources_to_answer:
-        ret = answer + extra
-    else:
-        ret = answer
-    return ret, extra
-
-
-def set_userid(db1s, requests_state1, get_userid_auth):
-    db1 = db1s[LangChainMode.MY_DATA.value]
-    assert db1 is not None and len(db1) == length_db1()
-    if not db1[1]:
-        db1[1] = get_userid_auth(requests_state1)
-    if not db1[2]:
-        username1 = None
-        if 'username' in requests_state1:
-            username1 = requests_state1['username']
-        db1[2] = username1
-
-
-def set_userid_direct(db1s, userid, username):
-    db1 = db1s[LangChainMode.MY_DATA.value]
-    db1[1] = userid
-    db1[2] = username
-
-
-def get_userid_direct(db1s):
-    return db1s[LangChainMode.MY_DATA.value][1] if db1s is not None else ''
-
-
-def get_username_direct(db1s):
-    return db1s[LangChainMode.MY_DATA.value][2] if db1s is not None else ''
-
-
-def get_dbid(db1):
-    return db1[1]
-
-
-def set_dbid(db1):
-    # can only call this after function called so for specific user, not in gr.State() that occurs during app init
-    assert db1 is not None and len(db1) == length_db1()
-    if db1[1] is None:
-        #  uuid in db is used as user ID
-        db1[1] = str(uuid.uuid4())
-
-
-def length_db1():
-    # For MyData:
-    # 0: db
-    # 1: userid and dbid
-    # 2: username
-
-    # For others:
-    # 0: db
-    # 1: dbid
-    # 2: None
-    return 3
-
-
-def get_any_db(db1s, langchain_mode, langchain_mode_paths, langchain_mode_types,
-               dbs=None,
-               load_db_if_exists=None, db_type=None,
-               use_openai_embedding=None,
-               hf_embedding_model=None, migrate_embedding_model=None, auto_migrate_db=None,
-               for_sources_list=False,
-               verbose=False,
-               n_jobs=-1,
-               ):
-    if langchain_mode in [LangChainMode.DISABLED.value, LangChainMode.LLM.value]:
-        return None
-    elif for_sources_list and langchain_mode in [LangChainMode.WIKI_FULL.value]:
-        # NOTE: avoid showing full wiki.  Takes about 30 seconds over about 90k entries, but not useful for now
-        return None
-    elif langchain_mode in db1s and len(db1s[langchain_mode]) > 1 and db1s[langchain_mode][0]:
-        return db1s[langchain_mode][0]
-    elif dbs is not None and langchain_mode in dbs and dbs[langchain_mode] is not None:
-        return dbs[langchain_mode]
-    else:
-        db = None
-
-    if db is None:
-        langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
-        persist_directory, langchain_type = get_persist_directory(langchain_mode, db1s=db1s, dbs=dbs,
-                                                                  langchain_type=langchain_type)
-        langchain_mode_types[langchain_mode] = langchain_type
-        # see if actually have on disk, don't try to switch embedding yet, since can't use return here
-        migrate_embedding_model = False
-        db, _, _ = \
-            get_existing_db(db, persist_directory, load_db_if_exists, db_type,
-                            use_openai_embedding,
-                            langchain_mode, langchain_mode_paths, langchain_mode_types,
-                            hf_embedding_model, migrate_embedding_model, auto_migrate_db,
-                            verbose=verbose, n_jobs=n_jobs)
-        if db is not None:
-            # if found db, then stuff into state, so don't have to reload again that takes time
-            if langchain_type == LangChainTypes.PERSONAL.value:
-                assert isinstance(db1s, dict), "db1s wrong type: %s" % type(db1s)
-                db1 = db1s[langchain_mode] = [db, None, None]
-                assert len(db1) == length_db1(), "Bad setup: %s" % len(db1)
-                set_dbid(db1)
-            else:
-                assert isinstance(dbs, dict), "dbs wrong type: %s" % type(dbs)
-                dbs[langchain_mode] = db
-
-    return db
-
-
-def get_sources(db1s, selection_docs_state1, requests_state1, langchain_mode,
-                dbs=None, docs_state0=None,
-                load_db_if_exists=None,
-                db_type=None,
-                use_openai_embedding=None,
-                hf_embedding_model=None,
-                migrate_embedding_model=None,
-                auto_migrate_db=None,
-                verbose=False,
-                get_userid_auth=None,
-                n_jobs=-1,
-                ):
-    for k in db1s:
-        set_dbid(db1s[k])
-    langchain_mode_paths = selection_docs_state1['langchain_mode_paths']
-    langchain_mode_types = selection_docs_state1['langchain_mode_types']
-    set_userid(db1s, requests_state1, get_userid_auth)
-    db = get_any_db(db1s, langchain_mode, langchain_mode_paths, langchain_mode_types,
-                    dbs=dbs,
-                    load_db_if_exists=load_db_if_exists,
-                    db_type=db_type,
-                    use_openai_embedding=use_openai_embedding,
-                    hf_embedding_model=hf_embedding_model,
-                    migrate_embedding_model=migrate_embedding_model,
-                    auto_migrate_db=auto_migrate_db,
-                    for_sources_list=True,
-                    verbose=verbose,
-                    n_jobs=n_jobs,
-                    )
-
-    if langchain_mode in ['LLM'] or db is None:
-        source_files_added = "NA"
-        source_list = []
-        num_chunks = 0
-    elif langchain_mode in ['wiki_full']:
-        source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \
-                             "  Ask jon.mckinney@h2o.ai for file if required."
-        source_list = []
-        num_chunks = 0
-    elif db is not None:
-        metadatas = get_metadatas(db)
-        source_list = sorted(set([x['source'] for x in metadatas]))
-        source_files_added = '\n'.join(source_list)
-        num_chunks = len(metadatas)
-    else:
-        source_list = []
-        source_files_added = "None"
-        num_chunks = 0
-    sources_dir = "sources_dir"
-    sources_dir = makedirs(sources_dir, exist_ok=True, tmp_ok=True, use_base=True)
-    sources_file = os.path.join(sources_dir, 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4())))
-    with open(sources_file, "wt") as f:
-        f.write(source_files_added)
-    source_list = docs_state0 + source_list
-    if DocumentChoice.ALL.value in source_list:
-        source_list.remove(DocumentChoice.ALL.value)
-    return sources_file, source_list, num_chunks, db
-
-
-def update_user_db(file, db1s, selection_docs_state1, requests_state1,
-                   langchain_mode=None,
-                   get_userid_auth=None,
-                   **kwargs):
-    kwargs.update(selection_docs_state1)
-    set_userid(db1s, requests_state1, get_userid_auth)
-
-    if file is None:
-        raise RuntimeError("Don't use change, use input")
-
-    try:
-        return _update_user_db(file, db1s=db1s,
-                               langchain_mode=langchain_mode,
-                               **kwargs)
-    except BaseException as e:
-        print(traceback.format_exc(), flush=True)
-        # gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox
-        ex_str = "Exception: %s" % str(e)
-        source_files_added = """\
-        <html>
-          <body>
-            <p>
-               Sources: <br>
-            </p>
-               <div style="overflow-y: auto;height:400px">
-               {0}
-               </div>
-          </body>
-        </html>
-        """.format(ex_str)
-        doc_exception_text = str(e)
-        return None, langchain_mode, source_files_added, doc_exception_text, None
-    finally:
-        clear_torch_cache()
-
-
-def get_lock_file(db1, langchain_mode):
-    db_id = get_dbid(db1)
-    base_path = 'locks'
-    base_path = makedirs(base_path, exist_ok=True, tmp_ok=True, use_base=True)
-    # don't allow db_id to be '' or None, would be bug and lock up everything
-    if not db_id:
-        if os.getenv('HARD_ASSERTS'):
-            raise ValueError("Invalid access for langchain_mode=%s" % langchain_mode)
-        db_id = str(uuid.uuid4())
-    lock_file = os.path.join(base_path, "db_%s_%s.lock" % (langchain_mode.replace(' ', '_').replace('/', '_'), db_id))
-    makedirs(os.path.dirname(lock_file))  # ensure really made
-    return lock_file
-
-
-def _update_user_db(file,
-                    db1s=None,
-                    langchain_mode='UserData',
-                    chunk=None, chunk_size=None,
-
-                    # urls
-                    use_unstructured=True,
-                    use_playwright=False,
-                    use_selenium=False,
-
-                    # pdfs
-                    use_pymupdf='auto',
-                    use_unstructured_pdf='auto',
-                    use_pypdf='auto',
-                    enable_pdf_ocr='auto',
-                    enable_pdf_doctr='auto',
-                    try_pdf_as_html='auto',
-
-                    # images
-                    enable_ocr=False,
-                    enable_doctr=False,
-                    enable_pix2struct=False,
-                    enable_captions=True,
-                    captions_model=None,
-                    caption_loader=None,
-                    doctr_loader=None,
-                    pix2struct_loader=None,
-
-                    # json
-                    jq_schema='.[]',
-
-                    dbs=None, db_type=None,
-                    langchain_modes=None,
-                    langchain_mode_paths=None,
-                    langchain_mode_types=None,
-                    use_openai_embedding=None,
-                    hf_embedding_model=None,
-                    migrate_embedding_model=None,
-                    auto_migrate_db=None,
-                    verbose=None,
-                    n_jobs=-1,
-                    is_url=None, is_txt=None,
-                    ):
-    assert db1s is not None
-    assert chunk is not None
-    assert chunk_size is not None
-    assert use_openai_embedding is not None
-    assert hf_embedding_model is not None
-    assert migrate_embedding_model is not None
-    assert auto_migrate_db is not None
-    assert caption_loader is not None
-    assert doctr_loader is not None
-    assert enable_captions is not None
-    assert captions_model is not None
-    assert enable_ocr is not None
-    assert enable_doctr is not None
-    assert enable_pdf_ocr is not None
-    assert enable_pdf_doctr is not None
-    assert enable_pix2struct is not None
-    assert verbose is not None
-
-    if dbs is None:
-        dbs = {}
-    assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs))
-    # handle case of list of temp buffer
-    if isinstance(file, str) and file.strip().startswith('['):
-        try:
-            file = ast.literal_eval(file.strip())
-        except Exception as e:
-            print("Tried to parse %s as list but failed: %s" % (file, str(e)), flush=True)
-    if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'):
-        file = [x.name for x in file]
-    # handle single file of temp buffer
-    if hasattr(file, 'name'):
-        file = file.name
-    if not isinstance(file, (list, tuple, typing.Generator)) and isinstance(file, str):
-        file = [file]
-
-    if langchain_mode == LangChainMode.DISABLED.value:
-        return None, langchain_mode, get_source_files(), "", None
-
-    if langchain_mode in [LangChainMode.LLM.value]:
-        # then switch to MyData, so langchain_mode also becomes way to select where upload goes
-        # but default to mydata if nothing chosen, since safest
-        if LangChainMode.MY_DATA.value in langchain_modes:
-            langchain_mode = LangChainMode.MY_DATA.value
-        elif len(langchain_modes) >= 1:
-            langchain_mode = langchain_modes[0]
-        else:
-            return None, langchain_mode, get_source_files(), "", None
-
-    if langchain_mode_paths is None:
-        langchain_mode_paths = {}
-    user_path = langchain_mode_paths.get(langchain_mode)
-    # UserData or custom, which has to be from user's disk
-    if user_path is not None:
-        # move temp files from gradio upload to stable location
-        for fili, fil in enumerate(file):
-            if isinstance(fil, str) and os.path.isfile(fil):  # not url, text
-                new_fil = os.path.normpath(os.path.join(user_path, os.path.basename(fil)))
-                if os.path.normpath(os.path.abspath(fil)) != os.path.normpath(os.path.abspath(new_fil)):
-                    if os.path.isfile(new_fil):
-                        remove(new_fil)
-                    try:
-                        if os.path.dirname(new_fil):
-                            makedirs(os.path.dirname(new_fil))
-                        shutil.move(fil, new_fil)
-                    except FileExistsError:
-                        pass
-                    file[fili] = new_fil
-
-    if verbose:
-        print("Adding %s" % file, flush=True)
-
-    # FIXME: could avoid even parsing, let alone embedding, same old files if upload same file again
-    # FIXME: but assume nominally user isn't uploading all files over again from UI
-
-    if is_txt and hf_embedding_model == 'fake':
-        # avoid parallel if fake embedding since assume trivial ingestion
-        n_jobs = 1
-
-    sources = path_to_docs(file if not is_url and not is_txt else None,
-                           verbose=verbose,
-                           fail_any_exception=False,
-                           n_jobs=n_jobs,
-                           chunk=chunk, chunk_size=chunk_size,
-                           url=file if is_url else None,
-                           text=file if is_txt else None,
-
-                           # urls
-                           use_unstructured=use_unstructured,
-                           use_playwright=use_playwright,
-                           use_selenium=use_selenium,
-
-                           # pdfs
-                           use_pymupdf=use_pymupdf,
-                           use_unstructured_pdf=use_unstructured_pdf,
-                           use_pypdf=use_pypdf,
-                           enable_pdf_ocr=enable_pdf_ocr,
-                           enable_pdf_doctr=enable_pdf_doctr,
-                           try_pdf_as_html=try_pdf_as_html,
-
-                           # images
-                           enable_ocr=enable_ocr,
-                           enable_doctr=enable_doctr,
-                           enable_pix2struct=enable_pix2struct,
-                           enable_captions=enable_captions,
-                           captions_model=captions_model,
-                           caption_loader=caption_loader,
-                           doctr_loader=doctr_loader,
-                           pix2struct_loader=pix2struct_loader,
-
-                           # json
-                           jq_schema=jq_schema,
-
-                           db_type=db_type,
-                           )
-    exceptions = [x for x in sources if x.metadata.get('exception')]
-    exceptions_strs = [x.metadata['exception'] for x in exceptions]
-    sources = [x for x in sources if 'exception' not in x.metadata]
-
-    # below must at least come after langchain_mode is modified in case was LLM -> MyData,
-    # so original langchain mode changed
-    for k in db1s:
-        set_dbid(db1s[k])
-    db1 = get_db1(db1s, langchain_mode)
-
-    lock_file = get_lock_file(db1s[LangChainMode.MY_DATA.value], langchain_mode)  # user-level lock, not db-level lock
-    with filelock.FileLock(lock_file):
-        if langchain_mode in db1s:
-            if db1[0] is not None:
-                # then add
-                db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type,
-                                                                      use_openai_embedding=use_openai_embedding,
-                                                                      hf_embedding_model=hf_embedding_model)
-            else:
-                # in testing expect:
-                # assert len(db1) == length_db1() and db1[1] is None, "Bad MyData db: %s" % db1
-                # for production hit, when user gets clicky:
-                assert len(db1) == length_db1(), "Bad %s db: %s" % (langchain_mode, db1)
-                assert get_dbid(db1) is not None, "db hash was None, not allowed"
-                # then create
-                # if added has to original state and didn't change, then would be shared db for all users
-                langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
-                persist_directory, langchain_type = get_persist_directory(langchain_mode, db1s=db1s, dbs=dbs,
-                                                                          langchain_type=langchain_type)
-                langchain_mode_types[langchain_mode] = langchain_type
-                db = get_db(sources, use_openai_embedding=use_openai_embedding,
-                            db_type=db_type,
-                            persist_directory=persist_directory,
-                            langchain_mode=langchain_mode,
-                            langchain_mode_paths=langchain_mode_paths,
-                            langchain_mode_types=langchain_mode_types,
-                            hf_embedding_model=hf_embedding_model,
-                            migrate_embedding_model=migrate_embedding_model,
-                            auto_migrate_db=auto_migrate_db,
-                            n_jobs=n_jobs)
-            if db is not None:
-                db1[0] = db
-            source_files_added = get_source_files(db=db1[0], exceptions=exceptions)
-            if len(sources) > 0:
-                sources_last = os.path.basename(sources[-1].metadata.get('source', 'Unknown Source'))
-            else:
-                sources_last = None
-            return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs), sources_last
-        else:
-            langchain_type = langchain_mode_types.get(langchain_mode, LangChainTypes.EITHER.value)
-            persist_directory, langchain_type = get_persist_directory(langchain_mode, db1s=db1s, dbs=dbs,
-                                                                      langchain_type=langchain_type)
-            langchain_mode_types[langchain_mode] = langchain_type
-            if langchain_mode in dbs and dbs[langchain_mode] is not None:
-                # then add
-                db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type,
-                                                                      use_openai_embedding=use_openai_embedding,
-                                                                      hf_embedding_model=hf_embedding_model)
-            else:
-                # then create.  Or might just be that dbs is unfilled, then it will fill, then add
-                db = get_db(sources, use_openai_embedding=use_openai_embedding,
-                            db_type=db_type,
-                            persist_directory=persist_directory,
-                            langchain_mode=langchain_mode,
-                            langchain_mode_paths=langchain_mode_paths,
-                            langchain_mode_types=langchain_mode_types,
-                            hf_embedding_model=hf_embedding_model,
-                            migrate_embedding_model=migrate_embedding_model,
-                            auto_migrate_db=auto_migrate_db,
-                            n_jobs=n_jobs)
-            dbs[langchain_mode] = db
-            # NOTE we do not return db, because function call always same code path
-            # return dbs[langchain_mode]
-            # db in this code path is updated in place
-            source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions)
-            if len(sources) > 0:
-                sources_last = os.path.basename(sources[-1].metadata.get('source', 'Unknown Source'))
-            else:
-                sources_last = None
-            return None, langchain_mode, source_files_added, '\n'.join(exceptions_strs), sources_last
-
-
-def get_source_files_given_langchain_mode(db1s, selection_docs_state1, requests_state1, document_choice1,
-                                          langchain_mode,
-                                          dbs=None,
-                                          load_db_if_exists=None,
-                                          db_type=None,
-                                          use_openai_embedding=None,
-                                          hf_embedding_model=None,
-                                          migrate_embedding_model=None,
-                                          auto_migrate_db=None,
-                                          verbose=False,
-                                          get_userid_auth=None,
-                                          delete_sources=False,
-                                          n_jobs=-1):
-    langchain_mode_paths = selection_docs_state1['langchain_mode_paths']
-    langchain_mode_types = selection_docs_state1['langchain_mode_types']
-    set_userid(db1s, requests_state1, get_userid_auth)
-    db = get_any_db(db1s, langchain_mode, langchain_mode_paths, langchain_mode_types,
-                    dbs=dbs,
-                    load_db_if_exists=load_db_if_exists,
-                    db_type=db_type,
-                    use_openai_embedding=use_openai_embedding,
-                    hf_embedding_model=hf_embedding_model,
-                    migrate_embedding_model=migrate_embedding_model,
-                    auto_migrate_db=auto_migrate_db,
-                    for_sources_list=True,
-                    verbose=verbose,
-                    n_jobs=n_jobs,
-                    )
-    if delete_sources:
-        del_from_db(db, document_choice1, db_type=db_type)
-
-    if langchain_mode in ['LLM'] or db is None:
-        return "Sources: N/A"
-    return get_source_files(db=db, exceptions=None)
-
-
-def get_source_files(db=None, exceptions=None, metadatas=None):
-    if exceptions is None:
-        exceptions = []
-
-    # only should be one source, not confused
-    # assert db is not None or metadatas is not None
-    # clicky user
-    if db is None and metadatas is None:
-        return "No Sources at all"
-
-    if metadatas is None:
-        source_label = "Sources:"
-        if db is not None:
-            metadatas = get_metadatas(db)
-        else:
-            metadatas = []
-        adding_new = False
-    else:
-        source_label = "New Sources:"
-        adding_new = True
-
-    # below automatically de-dups
-    small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in
-                  metadatas if x.get('page', 0) == 0}
-    # if small_dict is empty dict, that's ok
-    df = pd.DataFrame(small_dict.items(), columns=['source', 'head'])
-    df.index = df.index + 1
-    df.index.name = 'index'
-    source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')
-
-    if exceptions:
-        exception_metadatas = [x.metadata for x in exceptions]
-        small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in
-                      exception_metadatas}
-        # if small_dict is empty dict, that's ok
-        df = pd.DataFrame(small_dict.items(), columns=['source', 'exception'])
-        df.index = df.index + 1
-        df.index.name = 'index'
-        exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')
-    else:
-        exceptions_html = ''
-
-    if metadatas and exceptions:
-        source_files_added = """\
-        <html>
-          <body>
-            <p>
-               {0} <br>
-            </p>
-               <div style="overflow-y: auto;height:400px">
-               {1}
-               {2}
-               </div>
-          </body>
-        </html>
-        """.format(source_label, source_files_added, exceptions_html)
-    elif metadatas:
-        source_files_added = """\
-        <html>
-          <body>
-            <p>
-               {0} <br>
-            </p>
-               <div style="overflow-y: auto;height:400px">
-               {1}
-               </div>
-          </body>
-        </html>
-        """.format(source_label, source_files_added)
-    elif exceptions_html:
-        source_files_added = """\
-        <html>
-          <body>
-            <p>
-               Exceptions: <br>
-            </p>
-               <div style="overflow-y: auto;height:400px">
-               {0}
-               </div>
-          </body>
-        </html>
-        """.format(exceptions_html)
-    else:
-        if adding_new:
-            source_files_added = "No New Sources"
-        else:
-            source_files_added = "No Sources"
-
-    return source_files_added
-
-
-def update_and_get_source_files_given_langchain_mode(db1s,
-                                                     selection_docs_state,
-                                                     requests_state,
-                                                     langchain_mode, chunk, chunk_size,
-
-                                                     # urls
-                                                     use_unstructured=True,
-                                                     use_playwright=False,
-                                                     use_selenium=False,
-
-                                                     # pdfs
-                                                     use_pymupdf='auto',
-                                                     use_unstructured_pdf='auto',
-                                                     use_pypdf='auto',
-                                                     enable_pdf_ocr='auto',
-                                                     enable_pdf_doctr='auto',
-                                                     try_pdf_as_html='auto',
-
-                                                     # images
-                                                     enable_ocr=False,
-                                                     enable_doctr=False,
-                                                     enable_pix2struct=False,
-                                                     enable_captions=True,
-                                                     captions_model=None,
-                                                     caption_loader=None,
-                                                     doctr_loader=None,
-                                                     pix2struct_loader=None,
-
-                                                     # json
-                                                     jq_schema='.[]',
-
-                                                     dbs=None, first_para=None,
-                                                     hf_embedding_model=None,
-                                                     use_openai_embedding=None,
-                                                     migrate_embedding_model=None,
-                                                     auto_migrate_db=None,
-                                                     text_limit=None,
-                                                     db_type=None, load_db_if_exists=None,
-                                                     n_jobs=None, verbose=None, get_userid_auth=None):
-    set_userid(db1s, requests_state, get_userid_auth)
-    assert hf_embedding_model is not None
-    assert migrate_embedding_model is not None
-    assert auto_migrate_db is not None
-    langchain_mode_paths = selection_docs_state['langchain_mode_paths']
-    langchain_mode_types = selection_docs_state['langchain_mode_types']
-    has_path = {k: v for k, v in langchain_mode_paths.items() if v}
-    if langchain_mode in [LangChainMode.LLM.value, LangChainMode.MY_DATA.value]:
-        # then assume user really meant UserData, to avoid extra clicks in UI,
-        # since others can't be on disk, except custom user modes, which they should then select to query it
-        if LangChainMode.USER_DATA.value in has_path:
-            langchain_mode = LangChainMode.USER_DATA.value
-
-    db = get_any_db(db1s, langchain_mode, langchain_mode_paths, langchain_mode_types,
-                    dbs=dbs,
-                    load_db_if_exists=load_db_if_exists,
-                    db_type=db_type,
-                    use_openai_embedding=use_openai_embedding,
-                    hf_embedding_model=hf_embedding_model,
-                    migrate_embedding_model=migrate_embedding_model,
-                    auto_migrate_db=auto_migrate_db,
-                    for_sources_list=True,
-                    verbose=verbose,
-                    n_jobs=n_jobs,
-                    )
-
-    # not designed for older way of using openai embeddings, why use_openai_embedding=False
-    # use_openai_embedding, hf_embedding_model passed in and possible different values used,
-    # but no longer used here or in calling functions so ok
-    db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False,
-                                                        hf_embedding_model=hf_embedding_model,
-                                                        migrate_embedding_model=migrate_embedding_model,
-                                                        auto_migrate_db=auto_migrate_db,
-                                                        first_para=first_para, text_limit=text_limit,
-                                                        chunk=chunk,
-                                                        chunk_size=chunk_size,
-
-                                                        # urls
-                                                        use_unstructured=use_unstructured,
-                                                        use_playwright=use_playwright,
-                                                        use_selenium=use_selenium,
-
-                                                        # pdfs
-                                                        use_pymupdf=use_pymupdf,
-                                                        use_unstructured_pdf=use_unstructured_pdf,
-                                                        use_pypdf=use_pypdf,
-                                                        enable_pdf_ocr=enable_pdf_ocr,
-                                                        enable_pdf_doctr=enable_pdf_doctr,
-                                                        try_pdf_as_html=try_pdf_as_html,
-
-                                                        # images
-                                                        enable_ocr=enable_ocr,
-                                                        enable_doctr=enable_doctr,
-                                                        enable_pix2struct=enable_pix2struct,
-                                                        enable_captions=enable_captions,
-                                                        captions_model=captions_model,
-                                                        caption_loader=caption_loader,
-                                                        doctr_loader=doctr_loader,
-                                                        pix2struct_loader=pix2struct_loader,
-
-                                                        # json
-                                                        jq_schema=jq_schema,
-
-                                                        langchain_mode=langchain_mode,
-                                                        langchain_mode_paths=langchain_mode_paths,
-                                                        langchain_mode_types=langchain_mode_types,
-                                                        db_type=db_type,
-                                                        load_db_if_exists=load_db_if_exists,
-                                                        db=db,
-                                                        n_jobs=n_jobs,
-                                                        verbose=verbose)
-    # during refreshing, might have "created" new db since not in dbs[] yet, so insert back just in case
-    # so even if persisted, not kept up-to-date with dbs memory
-    if langchain_mode in db1s:
-        db1s[langchain_mode][0] = db
-    else:
-        dbs[langchain_mode] = db
-
-    # return only new sources with text saying such
-    return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata)
-
-
-def get_db1(db1s, langchain_mode1):
-    if langchain_mode1 in db1s:
-        db1 = db1s[langchain_mode1]
-    else:
-        # indicates to code that not personal database
-        db1 = [None] * length_db1()
-    return db1
-
-
-def clean_doc(docs1):
-    if not isinstance(docs1, (list, tuple, types.GeneratorType)):
-        docs1 = [docs1]
-    for doci, doc in enumerate(docs1):
-        docs1[doci].page_content = '\n'.join([x.strip() for x in doc.page_content.split("\n") if x.strip()])
-    return docs1
-
-
-def clone_documents(documents: Iterable[Document]) -> List[Document]:
-    # first clone documents
-    new_docs = []
-    for doc in documents:
-        new_doc = Document(page_content=doc.page_content, metadata=copy.deepcopy(doc.metadata))
-        new_docs.append(new_doc)
-    return new_docs
-
-
-def get_db_from_hf(dest=".", db_dir='db_dir_DriverlessAI_docs.zip'):
-    from huggingface_hub import hf_hub_download
-    # True for case when locally already logged in with correct token, so don't have to set key
-    token = os.getenv('HUGGING_FACE_HUB_TOKEN', True)
-    path_to_zip_file = hf_hub_download('h2oai/db_dirs', db_dir, token=token, repo_type='dataset')
-    import zipfile
-    with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
-        persist_directory = os.path.dirname(zip_ref.namelist()[0])
-        remove(persist_directory)
-        zip_ref.extractall(dest)
-    return path_to_zip_file
-
-
-# Note dir has space in some cases, while zip does not
-some_db_zips = [['db_dir_DriverlessAI_docs.zip', 'db_dir_DriverlessAI docs', 'CC-BY-NC license'],
-                ['db_dir_UserData.zip', 'db_dir_UserData', 'CC-BY license for ArXiv'],
-                ['db_dir_github_h2oGPT.zip', 'db_dir_github h2oGPT', 'ApacheV2 license'],
-                ['db_dir_wiki.zip', 'db_dir_wiki', 'CC-BY-SA Wikipedia license'],
-                # ['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
-                ]
-
-all_db_zips = some_db_zips + \
-              [['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
-               ]
-
-
-def get_some_dbs_from_hf(dest='.', db_zips=None):
-    if db_zips is None:
-        db_zips = some_db_zips
-    for db_dir, dir_expected, license1 in db_zips:
-        path_to_zip_file = get_db_from_hf(dest=dest, db_dir=db_dir)
-        assert os.path.isfile(path_to_zip_file), "Missing zip in %s" % path_to_zip_file
-        if dir_expected:
-            assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected
-            assert os.path.isdir(
-                os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected
-
-
-def _create_local_weaviate_client():
-    WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080")
-    WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME')
-    WEAVIATE_PASSWORD = os.getenv('WEAVIATE_PASSWORD')
-    WEAVIATE_SCOPE = os.getenv('WEAVIATE_SCOPE', "offline_access")
-
-    resource_owner_config = None
-    try:
-        import weaviate
-        from weaviate.embedded import EmbeddedOptions
-        if WEAVIATE_USERNAME is not None and WEAVIATE_PASSWORD is not None:
-            resource_owner_config = weaviate.AuthClientPassword(
-                username=WEAVIATE_USERNAME,
-                password=WEAVIATE_PASSWORD,
-                scope=WEAVIATE_SCOPE
-            )
-
-        # if using remote server, don't choose persistent directory
-        client = weaviate.Client(WEAVIATE_URL, auth_client_secret=resource_owner_config)
-        return client
-    except Exception as e:
-        print(f"Failed to create Weaviate client: {e}")
-        return None
-
-
-if __name__ == '__main__':
-    pass