File size: 13,465 Bytes
95d538c
1e6d961
 
 
 
95d538c
1e6d961
 
 
95d538c
1e6d961
 
 
 
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
 
 
 
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
 
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
95d538c
1e6d961
 
 
 
 
95d538c
1e6d961
 
 
95d538c
1e6d961
 
 
 
 
95d538c
1e6d961
 
 
 
 
 
95d538c
1e6d961
 
 
95d538c
1e6d961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fe376
1e6d961
95d538c
1e6d961
95d538c
f5fe376
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import gradio as gr
import os
from typing import List, Tuple
import json
import time

# Configure the model and provider
MODEL_ID = "openai/gpt-oss-120b"
DEFAULT_PROVIDER = "groq"  # Can be changed to fireworks, hyperbolic, etc.

# System prompts for different modes
SYSTEM_PROMPTS = {
    "default": "You are a helpful AI assistant.",
    "creative": "You are a creative and imaginative AI that thinks outside the box.",
    "technical": "You are a technical expert AI that provides detailed, accurate technical information.",
    "concise": "You are a concise AI that provides brief, to-the-point responses.",
    "teacher": "You are a patient teacher who explains concepts clearly with examples.",
    "coder": "You are an expert programmer who writes clean, efficient, well-commented code.",
}

# CSS for dark theme and custom styling
custom_css = """
#chatbot {
    height: 600px !important;
    background: #0a0a0a;
}
#chatbot .message {
    font-size: 14px;
    line-height: 1.6;
}
.dark {
    background: #0a0a0a;
}
.user-message {
    background: rgba(0, 255, 136, 0.1) !important;
    border-left: 3px solid #00ff88;
}
.assistant-message {
    background: rgba(0, 255, 255, 0.05) !important;
    border-left: 3px solid #00ffff;
}
.footer {
    text-align: center;
    padding: 20px;
    color: #666;
}
"""

def format_message_history(history: List[Tuple[str, str]], system_prompt: str) -> List[dict]:
    """Format chat history for the model"""
    messages = []
    
    if system_prompt:
        messages.append({"role": "system", "content": system_prompt})
    
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    
    return messages

def stream_response(message: str, history: List[Tuple[str, str]], 
                   system_prompt: str, temperature: float, max_tokens: int, 
                   top_p: float, provider: str):
    """Generate streaming response from the model"""
    
    # Format messages for the model
    messages = format_message_history(history, system_prompt)
    messages.append({"role": "user", "content": message})
    
    # Simulate streaming for demo (replace with actual API call)
    # In production, you'd use the actual provider API here
    demo_response = f"""I'm GPT-OSS-120B running on {provider}! 
    
I received your message: "{message}"

With these settings:
- Temperature: {temperature}
- Max tokens: {max_tokens}
- Top-p: {top_p}
- System prompt: {system_prompt[:50]}...

This is where the actual model response would appear. In production, this would connect to the {provider} API to generate real responses from the 120B parameter model.

The model would analyze your input and provide a detailed, thoughtful response based on its massive 120 billion parameters of knowledge."""
    
    # Simulate streaming effect
    words = demo_response.split()
    response = ""
    for i in range(0, len(words), 3):
        chunk = " ".join(words[i:i+3])
        response += chunk + " "
        time.sleep(0.05)  # Simulate streaming delay
        yield response.strip()

def clear_chat():
    """Clear the chat history"""
    return None, []

def undo_last(history):
    """Remove the last message from history"""
    if history:
        return history[:-1]
    return history

def retry_last(message, history):
    """Retry the last message"""
    if history and history[-1][0]:
        last_message = history[-1][0]
        return last_message, history[:-1]
    return message, history

def load_example(example):
    """Load an example prompt"""
    return example

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, title="GPT-OSS-120B Chat") as demo:
    
    # Header
    gr.Markdown(
        """
        # 🧠 GPT-OSS-120B Mega Chat
        ### 120 Billion Parameters of Pure Intelligence πŸš€
        
        Chat with OpenAI's massive GPT-OSS-120B model - one of the largest open-weight models available!
        """
    )
    
    # Main chat interface
    with gr.Row():
        # Chat column
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                label="Chat",
                elem_id="chatbot",
                bubble_full_width=False,
                show_copy_button=True,
                height=500,
                type="tuples"
            )
            
            # Input area
            with gr.Row():
                msg = gr.Textbox(
                    label="Message",
                    placeholder="Ask anything... (Shift+Enter for new line, Enter to send)",
                    lines=3,
                    max_lines=10,
                    scale=5,
                    elem_classes="user-input"
                )
                
                with gr.Column(scale=1, min_width=80):
                    send_btn = gr.Button("Send πŸ“€", variant="primary", size="lg")
                    stop_btn = gr.Button("Stop ⏹️", variant="stop", size="lg", visible=False)
            
            # Action buttons
            with gr.Row():
                clear_btn = gr.Button("πŸ—‘οΈ Clear", size="sm")
                undo_btn = gr.Button("↩️ Undo", size="sm")
                retry_btn = gr.Button("πŸ”„ Retry", size="sm")
                
        # Settings column
        with gr.Column(scale=1):
            # Provider selection
            with gr.Accordion("πŸ”Œ Inference Provider", open=True):
                provider = gr.Dropdown(
                    label="Provider",
                    choices=["groq", "fireworks", "hyperbolic", "together", "anyscale"],
                    value=DEFAULT_PROVIDER,
                    info="Choose your inference provider"
                )
                
                login_btn = gr.Button("πŸ” Sign in with HuggingFace", size="sm")
            
            # Model settings
            with gr.Accordion("βš™οΈ Model Settings", open=True):
                system_mode = gr.Dropdown(
                    label="System Mode",
                    choices=list(SYSTEM_PROMPTS.keys()),
                    value="default",
                    info="Preset system prompts"
                )
                
                system_prompt = gr.Textbox(
                    label="Custom System Prompt",
                    value=SYSTEM_PROMPTS["default"],
                    lines=3,
                    info="Override with custom instructions"
                )
                
                temperature = gr.Slider(
                    label="Temperature",
                    minimum=0.0,
                    maximum=2.0,
                    value=0.7,
                    step=0.05,
                    info="Higher = more creative, Lower = more focused"
                )
                
                max_tokens = gr.Slider(
                    label="Max Tokens",
                    minimum=64,
                    maximum=8192,
                    value=2048,
                    step=64,
                    info="Maximum response length"
                )
                
                top_p = gr.Slider(
                    label="Top-p (Nucleus Sampling)",
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    info="Controls response diversity"
                )
                
                with gr.Row():
                    seed = gr.Number(
                        label="Seed",
                        value=-1,
                        info="Set for reproducible outputs (-1 for random)"
                    )
            
            # Advanced settings
            with gr.Accordion("πŸ”¬ Advanced", open=False):
                stream_output = gr.Checkbox(
                    label="Stream Output",
                    value=True,
                    info="Show response as it's generated"
                )
                
                show_reasoning = gr.Checkbox(
                    label="Show Reasoning Process",
                    value=False,
                    info="Display chain-of-thought if available"
                )
                
                reasoning_lang = gr.Dropdown(
                    label="Reasoning Language",
                    choices=["English", "Spanish", "French", "German", "Chinese", "Japanese"],
                    value="English",
                    info="Language for reasoning process"
                )
            
            # Model info
            with gr.Accordion("πŸ“Š Model Info", open=False):
                gr.Markdown(
                    """
                    **Model**: openai/gpt-oss-120b
                    - **Parameters**: 120 Billion
                    - **Architecture**: Transformer + MoE
                    - **Context**: 128K tokens
                    - **Training**: Multi-lingual, code, reasoning
                    - **License**: Open weight
                    
                    **Capabilities**:
                    - Complex reasoning
                    - Code generation
                    - Creative writing
                    - Technical analysis
                    - Multi-lingual support
                    - Function calling
                    """
                )
    
    # Examples section
    with gr.Accordion("πŸ’‘ Example Prompts", open=True):
        examples = gr.Examples(
            examples=[
                "Explain quantum computing to a 10-year-old",
                "Write a Python function to detect palindromes with O(1) space complexity",
                "What are the implications of AGI for society?",
                "Create a detailed business plan for a sustainable energy startup",
                "Translate 'Hello, how are you?' to 10 different languages",
                "Debug this code: `def fib(n): return fib(n-1) + fib(n-2)`",
                "Write a haiku about machine learning",
                "Compare and contrast transformers vs RNNs for NLP tasks",
            ],
            inputs=msg,
            label="Click to load an example"
        )
    
    # Stats and info
    with gr.Row():
        with gr.Column():
            token_count = gr.Textbox(
                label="Token Count",
                value="0 tokens",
                interactive=False,
                scale=1
            )
        with gr.Column():
            response_time = gr.Textbox(
                label="Response Time", 
                value="0.0s",
                interactive=False,
                scale=1
            )
        with gr.Column():
            model_status = gr.Textbox(
                label="Status",
                value="🟒 Ready",
                interactive=False,
                scale=1
            )
    
    # Event handlers
    def update_system_prompt(mode):
        return SYSTEM_PROMPTS.get(mode, SYSTEM_PROMPTS["default"])
    
    def user_submit(message, history):
        if not message.strip():
            return "", history
        return "", history + [(message, None)]
    
    def bot_respond(history, system_prompt, temperature, max_tokens, top_p, provider):
        if not history or history[-1][1] is not None:
            return history
        
        message = history[-1][0]
        
        # Generate response (streaming)
        bot_message = ""
        for chunk in stream_response(
            message, 
            history[:-1], 
            system_prompt, 
            temperature, 
            max_tokens, 
            top_p,
            provider
        ):
            bot_message = chunk
            history[-1] = (message, bot_message)
            yield history
    
    # Connect event handlers
    system_mode.change(
        update_system_prompt,
        inputs=[system_mode],
        outputs=[system_prompt]
    )
    
    # Message submission
    msg.submit(
        user_submit,
        [msg, chatbot],
        [msg, chatbot],
        queue=False
    ).then(
        bot_respond,
        [chatbot, system_prompt, temperature, max_tokens, top_p, provider],
        chatbot
    )
    
    send_btn.click(
        user_submit,
        [msg, chatbot],
        [msg, chatbot],
        queue=False
    ).then(
        bot_respond,
        [chatbot, system_prompt, temperature, max_tokens, top_p, provider],
        chatbot
    )
    
    # Action buttons
    clear_btn.click(
        lambda: (None, ""),
        outputs=[chatbot, msg],
        queue=False
    )
    
    undo_btn.click(
        undo_last,
        inputs=[chatbot],
        outputs=[chatbot],
        queue=False
    )
    
    retry_btn.click(
        retry_last,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False
    ).then(
        bot_respond,
        [chatbot, system_prompt, temperature, max_tokens, top_p, provider],
        chatbot
    )
    
    # Login button
    login_btn.click(
        lambda: gr.Info("Please implement HuggingFace OAuth login"),
        queue=False
    )
    
    # Footer
    gr.Markdown(
        """
        <div class='footer'>
        <p>Built with πŸ”₯ for the GPT-OSS-120B community | Model: openai/gpt-oss-120b</p>
        <p>Remember: This is a 120 billion parameter model - expect incredible responses!</p>
        </div>
        """
    )

# Launch configuration
if __name__ == "__main__":
    demo.launch()