Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app3.py +74 -0
- requirements.txt +8 -0
- style.css +4 -0
app3.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from langchain.prompts import PromptTemplate
|
| 3 |
+
from langchain.chains import LLMChain
|
| 4 |
+
from langchain_community.llms import HuggingFaceHub
|
| 5 |
+
from huggingface_hub import login
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
# Authenticate with Hugging Face Hub
|
| 12 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
| 13 |
+
login(hf_token)
|
| 14 |
+
|
| 15 |
+
# Initialize LLM using HuggingFaceHub
|
| 16 |
+
llm = HuggingFaceHub(
|
| 17 |
+
repo_id="caffsean/t5-base-finetuned-keyword-to-text-generation",
|
| 18 |
+
model_kwargs={
|
| 19 |
+
"temperature": 0.7, # Adjust for creativity
|
| 20 |
+
"max_length": 512, # Adjust for desired output length
|
| 21 |
+
}
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Define a function to generate responses
|
| 25 |
+
def get_blog_response(keywords: str, no_words: str, blog_style: str) -> str:
|
| 26 |
+
# Define a prompt template
|
| 27 |
+
template = "Generate a blog for {blog_style} job profile based on the keywords '{keywords}' within {no_words} words."
|
| 28 |
+
prompt = PromptTemplate(
|
| 29 |
+
input_variables=["keywords", "no_words", "blog_style"],
|
| 30 |
+
template=template
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Use LangChain LLMChain for structured interaction
|
| 34 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
| 35 |
+
response = chain.run(keywords=keywords, no_words=no_words, blog_style=blog_style)
|
| 36 |
+
return response
|
| 37 |
+
|
| 38 |
+
# Streamlit UI
|
| 39 |
+
st.set_page_config(
|
| 40 |
+
page_title="Blog Generation Using LangChain and Hugging Face",
|
| 41 |
+
layout="centered",
|
| 42 |
+
initial_sidebar_state="collapsed"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
st.header("Blog Generation App :earth_americas:")
|
| 46 |
+
|
| 47 |
+
st.write("This app uses LangChain and a fine-tuned T5 model for generating blogs. Please provide your inputs below:")
|
| 48 |
+
|
| 49 |
+
# Input fields
|
| 50 |
+
keywords = st.text_input("Enter the Blog Keywords")
|
| 51 |
+
|
| 52 |
+
col1, col2 = st.columns([5, 5])
|
| 53 |
+
with col1:
|
| 54 |
+
no_words = st.text_input("Number of Words")
|
| 55 |
+
with col2:
|
| 56 |
+
blog_style = st.selectbox(
|
| 57 |
+
"Writing the blog for",
|
| 58 |
+
["Researchers", "Engineers", "Doctors", "Content Creators", "Sportsman", "Businessman", "Common People"],
|
| 59 |
+
index=0
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
submit = st.button("Generate Blog")
|
| 63 |
+
|
| 64 |
+
# Generate response
|
| 65 |
+
if submit:
|
| 66 |
+
if keywords and no_words.isdigit() and int(no_words) > 0:
|
| 67 |
+
try:
|
| 68 |
+
st.write("Generating blog...")
|
| 69 |
+
response = get_blog_response(keywords, no_words, blog_style)
|
| 70 |
+
st.markdown(f"### Generated Blog:\n\n{response}")
|
| 71 |
+
except Exception as e:
|
| 72 |
+
st.error(f"An error occurred: {e}")
|
| 73 |
+
else:
|
| 74 |
+
st.warning("Please provide valid inputs for all fields.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
streamlit
|
| 3 |
+
ctransformers
|
| 4 |
+
sentence-transformers
|
| 5 |
+
uvicorn
|
| 6 |
+
langchain_community
|
| 7 |
+
transformers
|
| 8 |
+
python-dotenv
|
style.css
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
* {
|
| 2 |
+
background-color: #edb88b;
|
| 3 |
+
padding: 0;
|
| 4 |
+
}
|