demo_ner / pipeline.py
lalital's picture
Add related files
6c4ffba
raw
history blame
12.5 kB
import torch
from typing import Callable, List, Tuple, Union
from functools import partial
import itertools
from seqeval.scheme import Tokens, IOB2, IOBES
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizerBase
from pythainlp.tokenize import word_tokenize as pythainlp_word_tokenize
newmm_word_tokenizer = partial(pythainlp_word_tokenize, keep_whitespace=True, engine='newmm')
from thai2transformers.preprocess import rm_useless_spaces
SPIECE = '▁'
class TokenClassificationPipeline:
def __init__(self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizerBase,
pretokenizer: Callable[[str], List[str]] = newmm_word_tokenizer,
lowercase=False,
space_token='<_>',
device: int = -1,
group_entities: bool = False,
strict: bool = False,
tag_delimiter: str = '-',
scheme: str = 'IOB',
use_crf=False,
remove_spiece=True):
super().__init__()
assert isinstance(tokenizer, PreTrainedTokenizerBase)
# assert isinstance(model, PreTrainedModel)
self.model = model
self.tokenizer = tokenizer
self.pretokenizer = pretokenizer
self.lowercase = lowercase
self.space_token = space_token
self.device = 'cpu' if device == -1 or not torch.cuda.is_available() else f'cuda:{device}'
self.group_entities = group_entities
self.strict = strict
self.tag_delimiter = tag_delimiter
self.scheme = scheme
self.id2label = self.model.config.id2label
self.label2id = self.model.config.label2id
self.use_crf = use_crf
self.remove_spiece = remove_spiece
self.model.to(self.device)
def preprocess(self, inputs: Union[str, List[str]]) -> Union[List[str], List[List[str]]]:
if self.lowercase:
inputs = inputs.lower() if type(inputs) == str else list(map(str.lower, inputs))
inputs = rm_useless_spaces(inputs) if type(inputs) == str else list(map(rm_useless_spaces, inputs))
tokens = self.pretokenizer(inputs) if type(inputs) == str else list(map(self.pretokenizer, inputs))
tokens = list(map(lambda x: x.replace(' ', self.space_token), tokens)) if type(inputs) == str else \
list(map(lambda _tokens: list(map(lambda x: x.replace(' ', self.space_token), _tokens)), tokens))
return tokens
def _inference(self, input: str):
tokens = [[self.tokenizer.bos_token]] + \
[self.tokenizer.tokenize(tok) if tok != SPIECE else [SPIECE] for tok in self.preprocess(input)] + \
[[self.tokenizer.eos_token]]
ids = [self.tokenizer.convert_tokens_to_ids(token) for token in tokens]
flatten_tokens = list(itertools.chain(*tokens))
flatten_ids = list(itertools.chain(*ids))
input_ids = torch.LongTensor([flatten_ids]).to(self.device)
if self.use_crf:
out = self.model(input_ids=input_ids)
else:
out = self.model(input_ids=input_ids, return_dict=True)
probs = torch.softmax(out['logits'], dim=-1)
vals, indices = probs.topk(1)
indices_np = indices.detach().cpu().numpy().reshape(-1)
list_of_token_label_tuple = list(zip(flatten_tokens, [ self.id2label[idx] for idx in indices_np] ))
merged_preds = self._merged_pred(preds=list_of_token_label_tuple, ids=ids)
if self.remove_spiece:
merged_preds = list(map(lambda x: (x[0].replace(SPIECE, ''), x[1]), merged_preds))
# remove start and end tokens
merged_preds_removed_bos_eos = merged_preds[1:-1]
# convert to list of Dict objects
merged_preds_return_dict = [ {'word': word if word != self.space_token else ' ', 'entity': tag, '√': idx } \
for idx, (word, tag) in enumerate(merged_preds_removed_bos_eos) ]
if (not self.group_entities or self.scheme == None) and self.strict == True:
return merged_preds_return_dict
elif not self.group_entities and self.strict == False:
tags = list(map(lambda x: x['entity'], merged_preds_return_dict))
processed_tags = self._fix_incorrect_tags(tags)
for i, item in enumerate(merged_preds_return_dict):
merged_preds_return_dict[i]['entity'] = processed_tags[i]
return merged_preds_return_dict
elif self.group_entities:
return self._group_entities(merged_preds_removed_bos_eos)
def __call__(self, inputs: Union[str, List[str]]):
"""
"""
if type(inputs) == str:
return self._inference(inputs)
if type(inputs) == list:
results = [ self._inference(text) for text in inputs]
return results
def _merged_pred(self, preds: List[Tuple[str, str]], ids: List[List[int]]):
token_mapping = [ ]
for i in range(0, len(ids)):
for j in range(0, len(ids[i])):
token_mapping.append(i)
grouped_subtokens = []
_subtoken = []
prev_idx = 0
for i, (subtoken, label) in enumerate(preds):
current_idx = token_mapping[i]
if prev_idx != current_idx:
grouped_subtokens.append(_subtoken)
_subtoken = [(subtoken, label)]
if i == len(preds) -1:
_subtoken = [(subtoken, label)]
grouped_subtokens.append(_subtoken)
elif i == len(preds) -1:
_subtoken += [(subtoken, label)]
grouped_subtokens.append(_subtoken)
else:
_subtoken += [(subtoken, label)]
prev_idx = current_idx
merged_subtokens = []
_merged_subtoken = ''
for subtoken_group in grouped_subtokens:
first_token_pred = subtoken_group[0][1]
_merged_subtoken = ''.join(list(map(lambda x: x[0], subtoken_group)))
merged_subtokens.append((_merged_subtoken, first_token_pred))
return merged_subtokens
def _fix_incorrect_tags(self, tags: List[str]) -> List[str]:
I_PREFIX = f'I{self.tag_delimiter}'
E_PREFIX = f'E{self.tag_delimiter}'
B_PREFIX = f'B{self.tag_delimiter}'
O_PREFIX = 'O'
previous_tag_ne = None
for i, current_tag in enumerate(tags):
current_tag_ne = current_tag.split(self.tag_delimiter)[-1] if current_tag != O_PREFIX else O_PREFIX
if i == 0 and (current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring at the begining of sentence
# e.g. (I-LOC, I-LOC) , (E-LOC, B-PER) (I-LOC, O, O)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i >= 1 and tags[i-1] == O_PREFIX and (
current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring after O tag
# e.g. (O, I-LOC, I-LOC) , (O, E-LOC, B-PER) (O, I-LOC, O, O)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i >= 1 and ( tags[i-1].startswith(I_PREFIX) or \
tags[i-1].startswith(E_PREFIX) or \
tags[i-1].startswith(B_PREFIX)) and \
( current_tag.startswith(I_PREFIX) or current_tag.startswith(E_PREFIX) ) and \
previous_tag_ne != current_tag_ne:
# if a NE tag (with I-, or E- prefix) occuring after NE tag with different NE
# e.g. (B-LOC, I-PER) , (B-LOC, E-LOC, E-PER) (B-LOC, I-LOC, I-PER)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i == len(tags) - 1 and tags[i-1] == O_PREFIX and (
current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring at the end of sentence
# e.g. (O, O, I-LOC) , (O, O, E-LOC)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
previous_tag_ne = current_tag_ne
return tags
def _group_entities(self, ner_tags: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
if self.scheme not in ['IOB', 'IOBES', 'IOBE']:
raise AttributeError()
tokens, tags = zip(*ner_tags)
tokens, tags = list(tokens), list(tags)
if self.scheme == 'IOBE':
# Replace E prefix with I prefix
tags = list(map(lambda x: x.replace(f'E{self.tag_delimiter}', f'I{self.tag_delimiter}'), tags))
if self.scheme == 'IOBES':
# Replace E prefix with I prefix and replace S prefix with B
tags = list(map(lambda x: x.replace(f'E{self.tag_delimiter}', f'I{self.tag_delimiter}'), tags))
tags = list(map(lambda x: x.replace(f'S{self.tag_delimiter}', f'B{self.tag_delimiter}'), tags))
if not self.strict:
tags = self._fix_incorrect_tags(tags)
ent = Tokens(tokens=tags, scheme=IOB2,
suffix=False, delimiter=self.tag_delimiter)
ne_position_mappings = ent.entities
token_positions = []
curr_len = 0
tokens = list(map(lambda x: x.replace('<_>', ' ').replace('ํา', 'ำ'), tokens))
for i, token in enumerate(tokens):
token_len = len(token)
if i == 0:
token_positions.append((0, curr_len + token_len))
else:
token_positions.append((curr_len, curr_len + token_len ))
curr_len += token_len
print(f'token_positions: {list(zip(tokens, token_positions))}')
begin_end_pos = []
begin_end_char_pos = []
accum_char_len = 0
for i, ne_position_mapping in enumerate(ne_position_mappings):
print(f'ne_position_mapping.start: {ne_position_mapping.start}')
print(f'ne_position_mapping.end: {ne_position_mapping.end}\n')
begin_end_pos.append((ne_position_mapping.start, ne_position_mapping.end))
begin_end_char_pos.append((token_positions[ne_position_mapping.start][0], token_positions[ne_position_mapping.end-1][1]))
print(f'begin_end_pos: {begin_end_pos}')
print(f'begin_end_char_pos: {begin_end_char_pos}')
j = 0
# print(f'tokens: {tokens}')
for i, pos_tuple in enumerate(begin_end_pos):
# print(f'j = {j}')
if pos_tuple[0] > 0 and i == 0:
ne_position_mappings.insert(0, (None, 'O', 0, pos_tuple[0]))
j += 1
if begin_end_pos[i-1][1] != begin_end_pos[i][0] and len(begin_end_pos) > 1 and i > 0 :
ne_position_mappings.insert(j, (None, 'O', begin_end_pos[i-1][1], begin_end_pos[i][0]))
j += 1
j += 1
print('ne_position_mappings', ne_position_mappings)
groups = []
k = 0
for i, ne_position_mapping in enumerate(ne_position_mappings):
if type(ne_position_mapping) != tuple:
ne_position_mapping = ne_position_mapping.to_tuple()
ne = ne_position_mapping[1]
text = ''
for ne_position in range(ne_position_mapping[2], ne_position_mapping[3]):
_token = tokens[ne_position]
text += _token if _token != self.space_token else ' '
if ne.lower() != 'o':
groups.append({
'entity_group': ne,
'word': text,
'begin_char_index': begin_end_char_pos[k][0]
})
k+=1
else:
groups.append({
'entity_group': ne,
'word': text,
})
return groups