File size: 12,493 Bytes
6c4ffba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import torch
from typing import Callable, List, Tuple, Union
from functools import partial
import itertools
from seqeval.scheme import Tokens, IOB2, IOBES
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizerBase
from pythainlp.tokenize import word_tokenize as pythainlp_word_tokenize
newmm_word_tokenizer = partial(pythainlp_word_tokenize, keep_whitespace=True, engine='newmm')
from thai2transformers.preprocess import rm_useless_spaces
SPIECE = '▁'
class TokenClassificationPipeline:
def __init__(self,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizerBase,
pretokenizer: Callable[[str], List[str]] = newmm_word_tokenizer,
lowercase=False,
space_token='<_>',
device: int = -1,
group_entities: bool = False,
strict: bool = False,
tag_delimiter: str = '-',
scheme: str = 'IOB',
use_crf=False,
remove_spiece=True):
super().__init__()
assert isinstance(tokenizer, PreTrainedTokenizerBase)
# assert isinstance(model, PreTrainedModel)
self.model = model
self.tokenizer = tokenizer
self.pretokenizer = pretokenizer
self.lowercase = lowercase
self.space_token = space_token
self.device = 'cpu' if device == -1 or not torch.cuda.is_available() else f'cuda:{device}'
self.group_entities = group_entities
self.strict = strict
self.tag_delimiter = tag_delimiter
self.scheme = scheme
self.id2label = self.model.config.id2label
self.label2id = self.model.config.label2id
self.use_crf = use_crf
self.remove_spiece = remove_spiece
self.model.to(self.device)
def preprocess(self, inputs: Union[str, List[str]]) -> Union[List[str], List[List[str]]]:
if self.lowercase:
inputs = inputs.lower() if type(inputs) == str else list(map(str.lower, inputs))
inputs = rm_useless_spaces(inputs) if type(inputs) == str else list(map(rm_useless_spaces, inputs))
tokens = self.pretokenizer(inputs) if type(inputs) == str else list(map(self.pretokenizer, inputs))
tokens = list(map(lambda x: x.replace(' ', self.space_token), tokens)) if type(inputs) == str else \
list(map(lambda _tokens: list(map(lambda x: x.replace(' ', self.space_token), _tokens)), tokens))
return tokens
def _inference(self, input: str):
tokens = [[self.tokenizer.bos_token]] + \
[self.tokenizer.tokenize(tok) if tok != SPIECE else [SPIECE] for tok in self.preprocess(input)] + \
[[self.tokenizer.eos_token]]
ids = [self.tokenizer.convert_tokens_to_ids(token) for token in tokens]
flatten_tokens = list(itertools.chain(*tokens))
flatten_ids = list(itertools.chain(*ids))
input_ids = torch.LongTensor([flatten_ids]).to(self.device)
if self.use_crf:
out = self.model(input_ids=input_ids)
else:
out = self.model(input_ids=input_ids, return_dict=True)
probs = torch.softmax(out['logits'], dim=-1)
vals, indices = probs.topk(1)
indices_np = indices.detach().cpu().numpy().reshape(-1)
list_of_token_label_tuple = list(zip(flatten_tokens, [ self.id2label[idx] for idx in indices_np] ))
merged_preds = self._merged_pred(preds=list_of_token_label_tuple, ids=ids)
if self.remove_spiece:
merged_preds = list(map(lambda x: (x[0].replace(SPIECE, ''), x[1]), merged_preds))
# remove start and end tokens
merged_preds_removed_bos_eos = merged_preds[1:-1]
# convert to list of Dict objects
merged_preds_return_dict = [ {'word': word if word != self.space_token else ' ', 'entity': tag, '√': idx } \
for idx, (word, tag) in enumerate(merged_preds_removed_bos_eos) ]
if (not self.group_entities or self.scheme == None) and self.strict == True:
return merged_preds_return_dict
elif not self.group_entities and self.strict == False:
tags = list(map(lambda x: x['entity'], merged_preds_return_dict))
processed_tags = self._fix_incorrect_tags(tags)
for i, item in enumerate(merged_preds_return_dict):
merged_preds_return_dict[i]['entity'] = processed_tags[i]
return merged_preds_return_dict
elif self.group_entities:
return self._group_entities(merged_preds_removed_bos_eos)
def __call__(self, inputs: Union[str, List[str]]):
"""
"""
if type(inputs) == str:
return self._inference(inputs)
if type(inputs) == list:
results = [ self._inference(text) for text in inputs]
return results
def _merged_pred(self, preds: List[Tuple[str, str]], ids: List[List[int]]):
token_mapping = [ ]
for i in range(0, len(ids)):
for j in range(0, len(ids[i])):
token_mapping.append(i)
grouped_subtokens = []
_subtoken = []
prev_idx = 0
for i, (subtoken, label) in enumerate(preds):
current_idx = token_mapping[i]
if prev_idx != current_idx:
grouped_subtokens.append(_subtoken)
_subtoken = [(subtoken, label)]
if i == len(preds) -1:
_subtoken = [(subtoken, label)]
grouped_subtokens.append(_subtoken)
elif i == len(preds) -1:
_subtoken += [(subtoken, label)]
grouped_subtokens.append(_subtoken)
else:
_subtoken += [(subtoken, label)]
prev_idx = current_idx
merged_subtokens = []
_merged_subtoken = ''
for subtoken_group in grouped_subtokens:
first_token_pred = subtoken_group[0][1]
_merged_subtoken = ''.join(list(map(lambda x: x[0], subtoken_group)))
merged_subtokens.append((_merged_subtoken, first_token_pred))
return merged_subtokens
def _fix_incorrect_tags(self, tags: List[str]) -> List[str]:
I_PREFIX = f'I{self.tag_delimiter}'
E_PREFIX = f'E{self.tag_delimiter}'
B_PREFIX = f'B{self.tag_delimiter}'
O_PREFIX = 'O'
previous_tag_ne = None
for i, current_tag in enumerate(tags):
current_tag_ne = current_tag.split(self.tag_delimiter)[-1] if current_tag != O_PREFIX else O_PREFIX
if i == 0 and (current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring at the begining of sentence
# e.g. (I-LOC, I-LOC) , (E-LOC, B-PER) (I-LOC, O, O)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i >= 1 and tags[i-1] == O_PREFIX and (
current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring after O tag
# e.g. (O, I-LOC, I-LOC) , (O, E-LOC, B-PER) (O, I-LOC, O, O)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i >= 1 and ( tags[i-1].startswith(I_PREFIX) or \
tags[i-1].startswith(E_PREFIX) or \
tags[i-1].startswith(B_PREFIX)) and \
( current_tag.startswith(I_PREFIX) or current_tag.startswith(E_PREFIX) ) and \
previous_tag_ne != current_tag_ne:
# if a NE tag (with I-, or E- prefix) occuring after NE tag with different NE
# e.g. (B-LOC, I-PER) , (B-LOC, E-LOC, E-PER) (B-LOC, I-LOC, I-PER)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
elif i == len(tags) - 1 and tags[i-1] == O_PREFIX and (
current_tag.startswith(I_PREFIX) or \
current_tag.startswith(E_PREFIX)):
# if a NE tag (with I-, or E- prefix) occuring at the end of sentence
# e.g. (O, O, I-LOC) , (O, O, E-LOC)
# then, change the prefix of the current tag to B{tag_delimiter}
tags[i] = B_PREFIX + tags[i][2:]
previous_tag_ne = current_tag_ne
return tags
def _group_entities(self, ner_tags: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
if self.scheme not in ['IOB', 'IOBES', 'IOBE']:
raise AttributeError()
tokens, tags = zip(*ner_tags)
tokens, tags = list(tokens), list(tags)
if self.scheme == 'IOBE':
# Replace E prefix with I prefix
tags = list(map(lambda x: x.replace(f'E{self.tag_delimiter}', f'I{self.tag_delimiter}'), tags))
if self.scheme == 'IOBES':
# Replace E prefix with I prefix and replace S prefix with B
tags = list(map(lambda x: x.replace(f'E{self.tag_delimiter}', f'I{self.tag_delimiter}'), tags))
tags = list(map(lambda x: x.replace(f'S{self.tag_delimiter}', f'B{self.tag_delimiter}'), tags))
if not self.strict:
tags = self._fix_incorrect_tags(tags)
ent = Tokens(tokens=tags, scheme=IOB2,
suffix=False, delimiter=self.tag_delimiter)
ne_position_mappings = ent.entities
token_positions = []
curr_len = 0
tokens = list(map(lambda x: x.replace('<_>', ' ').replace('ํา', 'ำ'), tokens))
for i, token in enumerate(tokens):
token_len = len(token)
if i == 0:
token_positions.append((0, curr_len + token_len))
else:
token_positions.append((curr_len, curr_len + token_len ))
curr_len += token_len
print(f'token_positions: {list(zip(tokens, token_positions))}')
begin_end_pos = []
begin_end_char_pos = []
accum_char_len = 0
for i, ne_position_mapping in enumerate(ne_position_mappings):
print(f'ne_position_mapping.start: {ne_position_mapping.start}')
print(f'ne_position_mapping.end: {ne_position_mapping.end}\n')
begin_end_pos.append((ne_position_mapping.start, ne_position_mapping.end))
begin_end_char_pos.append((token_positions[ne_position_mapping.start][0], token_positions[ne_position_mapping.end-1][1]))
print(f'begin_end_pos: {begin_end_pos}')
print(f'begin_end_char_pos: {begin_end_char_pos}')
j = 0
# print(f'tokens: {tokens}')
for i, pos_tuple in enumerate(begin_end_pos):
# print(f'j = {j}')
if pos_tuple[0] > 0 and i == 0:
ne_position_mappings.insert(0, (None, 'O', 0, pos_tuple[0]))
j += 1
if begin_end_pos[i-1][1] != begin_end_pos[i][0] and len(begin_end_pos) > 1 and i > 0 :
ne_position_mappings.insert(j, (None, 'O', begin_end_pos[i-1][1], begin_end_pos[i][0]))
j += 1
j += 1
print('ne_position_mappings', ne_position_mappings)
groups = []
k = 0
for i, ne_position_mapping in enumerate(ne_position_mappings):
if type(ne_position_mapping) != tuple:
ne_position_mapping = ne_position_mapping.to_tuple()
ne = ne_position_mapping[1]
text = ''
for ne_position in range(ne_position_mapping[2], ne_position_mapping[3]):
_token = tokens[ne_position]
text += _token if _token != self.space_token else ' '
if ne.lower() != 'o':
groups.append({
'entity_group': ne,
'word': text,
'begin_char_index': begin_end_char_pos[k][0]
})
k+=1
else:
groups.append({
'entity_group': ne,
'word': text,
})
return groups
|