import gradio as gr import os from langchain.chains import RetrievalQA from langchain.llms import OpenAI from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma def qa_system(pdf_files, openai_key, prompt, chain_type , k): os.environ["OPENAI_API_KEY"] = openai_key texts = [] # load documents from PDF files for pdf_file in pdf_files: loader = PyPDFLoader(pdf_file.name) documents = loader.load() # split the documents into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts.extend(text_splitter.split_documents(documents)) # select which embeddings we want to use embeddings = OpenAIEmbeddings() # create the vectorestore to use as the index db = Chroma.from_documents(texts, embeddings) # expose this index in a retriever interface retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k}) # create a chain to answer questions qa = RetrievalQA.from_chain_type( llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True) # get the result result = qa({"query": prompt}) return result['result'], ''.join(doc.page_content for doc in result["source_documents"]) # define the Gradio interface input_file = gr.File(file_count="multiple",label="PDF File") openai_key = gr.Textbox(label="OpenAI API Key", type="password") prompt = gr.Textbox(label="Question Prompt") chain_type = gr.Radio(['stuff', 'map_reduce', "refine", "map_rerank"], label="Chain Type",default = 'map_reduce') k = gr.Slider(minimum=1, maximum=5, default=2, label="Number of Relevant Chunks") output_text = gr.Textbox(label="Answer") output_docs = gr.Textbox(label="Relevant Source Text") gr.Interface(qa_system, inputs=[input_file, openai_key, prompt, chain_type, k], outputs=[output_text, output_docs], title="DocuAI", description="Upload a PDF file, enter your OpenAI API key, type a question prompt, select a chain type, and choose the number of relevant chunks to use for the answer.").launch(debug = True)