lab2-ui / app.py
MyNameIsSimon's picture
audio interface
e20cb99
raw
history blame
3.35 kB
import gradio as gr
import numpy as np
from transformers import pipeline
from custom_chat_interface import CustomChatInterface
from llama_cpp import Llama
from llama_cpp.llama_chat_format import MoondreamChatHandler
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
class MyModel:
def __init__(self):
self.client = None
self.current_model = ""
def respond(
self,
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
):
if model != self.current_model or self.current_model is None:
model_id, filename = model.split(",")
client = Llama.from_pretrained(
repo_id=model_id.strip(),
filename=f"*{filename.strip()}*.gguf",
n_ctx=2048, # n_ctx should be increased to accommodate the image embedding
)
self.client = client
self.current_model = model
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in self.client.create_chat_completion(
messages,
temperature=temperature,
top_p=top_p,
stream=True,
max_tokens=max_tokens,
):
delta = message["choices"][0]["delta"]
if "content" in delta:
response += delta["content"]
yield response
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
def transcribe(audio):
sr, y = audio
# Convert to mono if stereo
if y.ndim > 1:
y = y.mean(axis=1)
y = y.astype(np.float32)
y /= np.max(np.abs(y))
text = transcriber({"sampling_rate": sr, "raw": y})["text"]
return text
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
my_model = MyModel()
model_choices = ["lab2-as/lora_model_gguf, Q4", "lab2-as/lora_model_no_quant_gguf, Q4"]
demo = CustomChatInterface(
my_model.respond,
transcriber=transcribe,
additional_inputs=[
gr.Dropdown(
choices=model_choices,
value=model_choices[0],
label="Select Model",
),
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message",
),
gr.Slider(
minimum=1,
maximum=2048,
value=128,
step=1,
label="Max new tokens",
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (Nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()