|
import gradio as gr |
|
import numpy as np |
|
|
|
from transformers import pipeline |
|
from custom_chat_interface import CustomChatInterface |
|
|
|
from llama_cpp import Llama |
|
from llama_cpp.llama_chat_format import MoondreamChatHandler |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
class MyModel: |
|
def __init__(self): |
|
self.client = None |
|
self.current_model = "" |
|
|
|
def respond( |
|
self, |
|
message, |
|
history: list[tuple[str, str]], |
|
model, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
if model != self.current_model or self.current_model is None: |
|
model_id, filename = model.split(",") |
|
client = Llama.from_pretrained( |
|
repo_id=model_id.strip(), |
|
filename=f"*{filename.strip()}*.gguf", |
|
n_ctx=2048, |
|
) |
|
|
|
self.client = client |
|
self.current_model = model |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for message in self.client.create_chat_completion( |
|
messages, |
|
temperature=temperature, |
|
top_p=top_p, |
|
stream=True, |
|
max_tokens=max_tokens, |
|
): |
|
delta = message["choices"][0]["delta"] |
|
if "content" in delta: |
|
response += delta["content"] |
|
yield response |
|
|
|
|
|
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") |
|
def transcribe(audio): |
|
sr, y = audio |
|
|
|
|
|
if y.ndim > 1: |
|
y = y.mean(axis=1) |
|
|
|
y = y.astype(np.float32) |
|
y /= np.max(np.abs(y)) |
|
|
|
text = transcriber({"sampling_rate": sr, "raw": y})["text"] |
|
return text |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
my_model = MyModel() |
|
model_choices = ["lab2-as/lora_model_gguf, Q4", "lab2-as/lora_model_no_quant_gguf, Q4"] |
|
demo = CustomChatInterface( |
|
my_model.respond, |
|
transcriber=transcribe, |
|
additional_inputs=[ |
|
gr.Dropdown( |
|
choices=model_choices, |
|
value=model_choices[0], |
|
label="Select Model", |
|
), |
|
gr.Textbox( |
|
value="You are a friendly Chatbot.", |
|
label="System message", |
|
), |
|
gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=128, |
|
step=1, |
|
label="Max new tokens", |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature", |
|
), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (Nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|