import gradio as gr import hopsworks import json from datetime import datetime, timedelta import pandas as pd import os import hopsworks from hsfs.feature_store import FeatureStore def login(project="ID2223_Project") -> tuple[hopsworks.project.Project, FeatureStore]: project = hopsworks.login( api_key_value=os.environ["HOPSWORKS_API_KEY"], project=project, ) fs = project.get_feature_store() return project, fs def get_hist_roi(): project, fs = login() # Initial bank balance, wager amount and which league starting_bank = 0 wager = 1 league = "E0" # Get feature groups main_fg = fs.get_feature_group( name=f"football_{league.lower()}", version=1, ) pred_fg = fs.get_feature_group( name=f"football_{league.lower()}_predictions", version=1, ) # Query necessary features query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join( main_fg.select(["ftour", "avg_gt_2_5", "avg_lt_2_5"]), on=["datetime", "hometeam", "awayteam"], ) df: pd.DataFrame = query.read() df = df.sort_values(["datetime", "hometeam", "awayteam"], ignore_index=True) # Encode the full time over/under results df["ftour_encoded"] = df["ftour"].apply( lambda x: int(x.lower() == "o") if not pd.isna(x) else pd.NA ) df.dropna(inplace=True) # Determine the odds based on predictions df["odds"] = df.apply( lambda row: row["avg_gt_2_5"] if row["predictions"] == 1 else row["avg_lt_2_5"], axis=1, ) # Calculate profit/loss for each game df["profit"] = df.apply( lambda row: ( wager * (row["odds"] - 1) if row["predictions"] == row["ftour_encoded"] else -wager ), axis=1, ) # Calculate cumulative bank balance df["bank_balance"] = df["profit"].cumsum() + starting_bank df.drop(columns="odds", inplace=True) df['date'] = df['datetime'].dt.date daily_aggregated = df.groupby('date').agg({ 'profit': 'sum', # Total profit 'bank_balance': 'last', # Last bank balance of the day }).reset_index() daily_aggregated['date'] = daily_aggregated['date'].astype(str) total_best = len(df) bets_won = (df['profit'] > 0).sum() bets_lost = (df['profit'] < 0).sum() current_balance = df.iloc[-1]['bank_balance'] return {"total_bets": total_best, "bets_won": bets_won, "bets_lost": bets_lost, "current_balance": current_balance, "data": daily_aggregated} def logout(): hopsworks.logout() def get_todays_predictions(): project, fs = login() fg_pred = fs.get_feature_group('football_e0_predictions', version=1) # Query the latest row from main_fg based main_fg_query = fg_pred.select( [ "datetime", "hometeam", "awayteam", "predictions" ] ).filter(fg_pred.datetime >= datetime.today().strftime("%Y-%m-%d")) main_df = main_fg_query.read(online=False) main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over") return main_df def get_daily_predictions(): project, fs = login() fg_pred = fs.get_feature_group('football_e0_predictions', version=1) league = "E0" # Get feature groups main_fg = fs.get_feature_group( name=f"football_{league.lower()}", version=1, ) pred_fg = fs.get_feature_group( name=f"football_{league.lower()}_predictions", version=1, ) # Query necessary features query = pred_fg.select(["datetime", "predictions", "hometeam", "awayteam"]).join( main_fg.select(["ftour"]), on=["datetime", "hometeam", "awayteam"], ) main_df = query.read() main_df["predictions"] = main_df["predictions"].map(lambda x: "Under" if x == 0 else "Over") main_df["ftour"] = main_df["ftour"].map(lambda x: "Under" if x == "U" else "Over") main_df.rename(columns={"ftour": "Result"}, inplace=True) return main_df.sort_values(by="datetime", ascending=False).head(10) def get_schedule(): with open('./schedule.json', 'r') as handle: parsed = json.load(handle) return pd.DataFrame([{ "date": datetime.strptime(game['sport_event']['start_time'], "%Y-%m-%dT%H:%M:%S+00:00"), "home_team": game['sport_event']['competitors'][0]['name'], "away_team": game['sport_event']['competitors'][1]['name'], } for game in parsed["schedules"] ]) def get_next10games(schedule): return schedule.loc[schedule['date'] > today].sort_values(by='date').head(10) today = datetime.today() roi = get_hist_roi() with gr.Blocks() as demo: with gr.Row(): gr.Label(f"Total bets: {roi['total_bets']}") gr.Label(f"Bets won: {roi['bets_won']}") gr.Label(f"Bets lost: {roi['bets_lost']}") gr.Label(f"Current balance: {round(roi['current_balance'], 2)}") gr.LinePlot(roi["data"], x="date", y="bank_balance", title="Bank balance over time", y_title="Bank balance", x_title="Date") gr.Label("Today's predictions") gr.DataFrame(get_todays_predictions, headers=["Date", "Home Team", "Away Team", "Prediction"], every=7200) # 2hrs gr.Label("Last 10 games") gr.DataFrame(get_daily_predictions, headers=["Date", "Home Team", "Away Team", "Prediction"], every=7200) # 2hrs gr.Label("Upcoming games") next10 = gr.DataFrame(get_next10games(get_schedule()), label=None, headers=["Date", "Home Team", "Away Team"], interactive=False, every=7200) # 2hrs demo.launch()