File size: 6,684 Bytes
dbf90d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F

# Numpy-based errors

def mpjpe(predicted, target):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    assert predicted.shape == target.shape
    return np.mean(np.linalg.norm(predicted - target, axis=len(target.shape)-1), axis=1)

def p_mpjpe(predicted, target):
    """
    Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
    often referred to as "Protocol #2" in many papers.
    """
    assert predicted.shape == target.shape
    
    muX = np.mean(target, axis=1, keepdims=True)
    muY = np.mean(predicted, axis=1, keepdims=True)
    
    X0 = target - muX
    Y0 = predicted - muY

    normX = np.sqrt(np.sum(X0**2, axis=(1, 2), keepdims=True))
    normY = np.sqrt(np.sum(Y0**2, axis=(1, 2), keepdims=True))
    
    X0 /= normX
    Y0 /= normY

    H = np.matmul(X0.transpose(0, 2, 1), Y0)
    U, s, Vt = np.linalg.svd(H)
    V = Vt.transpose(0, 2, 1)
    R = np.matmul(V, U.transpose(0, 2, 1))

    # Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
    sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
    V[:, :, -1] *= sign_detR
    s[:, -1] *= sign_detR.flatten()
    R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation
    tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)
    a = tr * normX / normY # Scale
    t = muX - a*np.matmul(muY, R) # Translation
    # Perform rigid transformation on the input
    predicted_aligned = a*np.matmul(predicted, R) + t
    # Return MPJPE
    return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape)-1), axis=1)


# PyTorch-based errors (for losses)

def loss_mpjpe(predicted, target):
    """
    Mean per-joint position error (i.e. mean Euclidean distance),
    often referred to as "Protocol #1" in many papers.
    """
    assert predicted.shape == target.shape
    return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
    
def weighted_mpjpe(predicted, target, w):
    """
    Weighted mean per-joint position error (i.e. mean Euclidean distance)
    """
    assert predicted.shape == target.shape
    assert w.shape[0] == predicted.shape[0]
    return torch.mean(w * torch.norm(predicted - target, dim=len(target.shape)-1))

def loss_2d_weighted(predicted, target, conf):
    assert predicted.shape == target.shape
    predicted_2d = predicted[:,:,:,:2]
    target_2d = target[:,:,:,:2]
    diff = (predicted_2d - target_2d) * conf
    return torch.mean(torch.norm(diff, dim=-1))
    
def n_mpjpe(predicted, target):
    """
    Normalized MPJPE (scale only), adapted from:
    https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py
    """
    assert predicted.shape == target.shape
    norm_predicted = torch.mean(torch.sum(predicted**2, dim=3, keepdim=True), dim=2, keepdim=True)
    norm_target = torch.mean(torch.sum(target*predicted, dim=3, keepdim=True), dim=2, keepdim=True)
    scale = norm_target / norm_predicted
    return loss_mpjpe(scale * predicted, target)

def weighted_bonelen_loss(predict_3d_length, gt_3d_length):
    loss_length = 0.001 * torch.pow(predict_3d_length - gt_3d_length, 2).mean()
    return loss_length

def weighted_boneratio_loss(predict_3d_length, gt_3d_length):
    loss_length = 0.1 * torch.pow((predict_3d_length - gt_3d_length)/gt_3d_length, 2).mean()
    return loss_length

def get_limb_lens(x):
    '''
        Input: (N, T, 17, 3)
        Output: (N, T, 16)
    '''
    limbs_id = [[0,1], [1,2], [2,3],
         [0,4], [4,5], [5,6],
         [0,7], [7,8], [8,9], [9,10],
         [8,11], [11,12], [12,13],
         [8,14], [14,15], [15,16]
        ]
    limbs = x[:,:,limbs_id,:]
    limbs = limbs[:,:,:,0,:]-limbs[:,:,:,1,:]
    limb_lens = torch.norm(limbs, dim=-1)
    return limb_lens

def loss_limb_var(x):
    '''
        Input: (N, T, 17, 3)
    '''
    if x.shape[1]<=1:
        return torch.FloatTensor(1).fill_(0.)[0].to(x.device)
    limb_lens = get_limb_lens(x)
    limb_lens_var = torch.var(limb_lens, dim=1)
    limb_loss_var = torch.mean(limb_lens_var)
    return limb_loss_var

def loss_limb_gt(x, gt):
    '''
        Input: (N, T, 17, 3), (N, T, 17, 3)
    '''
    limb_lens_x = get_limb_lens(x)
    limb_lens_gt = get_limb_lens(gt) # (N, T, 16)
    return nn.L1Loss()(limb_lens_x, limb_lens_gt)

def loss_velocity(predicted, target):
    """
    Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative)
    """
    assert predicted.shape == target.shape
    if predicted.shape[1]<=1:
        return torch.FloatTensor(1).fill_(0.)[0].to(predicted.device)
    velocity_predicted = predicted[:,1:] - predicted[:,:-1]
    velocity_target = target[:,1:] - target[:,:-1]
    return torch.mean(torch.norm(velocity_predicted - velocity_target, dim=-1))

def loss_joint(predicted, target):
    assert predicted.shape == target.shape
    return nn.L1Loss()(predicted, target)

def get_angles(x):
    '''
        Input: (N, T, 17, 3)
        Output: (N, T, 16)
    '''
    limbs_id = [[0,1], [1,2], [2,3],
         [0,4], [4,5], [5,6],
         [0,7], [7,8], [8,9], [9,10],
         [8,11], [11,12], [12,13],
         [8,14], [14,15], [15,16]
        ]
    angle_id = [[ 0,  3],
                [ 0,  6],
                [ 3,  6],
                [ 0,  1],
                [ 1,  2],
                [ 3,  4],
                [ 4,  5],
                [ 6,  7],
                [ 7, 10],
                [ 7, 13],
                [ 8, 13],
                [10, 13],
                [ 7,  8],
                [ 8,  9],
                [10, 11],
                [11, 12],
                [13, 14],
                [14, 15] ]
    eps = 1e-7
    limbs = x[:,:,limbs_id,:]
    limbs = limbs[:,:,:,0,:]-limbs[:,:,:,1,:]
    angles = limbs[:,:,angle_id,:]
    angle_cos = F.cosine_similarity(angles[:,:,:,0,:], angles[:,:,:,1,:], dim=-1)
    return torch.acos(angle_cos.clamp(-1+eps, 1-eps)) 

def loss_angle(x, gt):
    '''
        Input: (N, T, 17, 3), (N, T, 17, 3)
    '''
    limb_angles_x = get_angles(x)
    limb_angles_gt = get_angles(gt)
    return nn.L1Loss()(limb_angles_x, limb_angles_gt)

def loss_angle_velocity(x, gt):
    """
    Mean per-angle velocity error (i.e. mean Euclidean distance of the 1st derivative)
    """
    assert x.shape == gt.shape
    if x.shape[1]<=1:
        return torch.FloatTensor(1).fill_(0.)[0].to(x.device)
    x_a = get_angles(x)
    gt_a = get_angles(gt)
    x_av = x_a[:,1:] - x_a[:,:-1]
    gt_av = gt_a[:,1:] - gt_a[:,:-1]
    return nn.L1Loss()(x_av, gt_av)