Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import torch | |
from diffusers import StableDiffusionPipeline | |
from peft import PeftModel, LoraConfig | |
from diffusers import DiffusionPipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def get_lora_sd_pipeline( | |
ckpt_dir='./model_output', | |
base_model_name_or_path=model_id_default, | |
dtype=torch_dtype, | |
device=device, | |
adapter_name="pusheen" | |
): | |
unet_sub_dir = os.path.join(ckpt_dir, "unet") | |
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") | |
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: | |
config = LoraConfig.from_pretrained(text_encoder_sub_dir) | |
base_model_name_or_path = config.base_model_name_or_path | |
if base_model_name_or_path is None: | |
raise ValueError("Please specify the base model name or path") | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device) | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
if os.path.exists(text_encoder_sub_dir): | |
pipe.text_encoder = PeftModel.from_pretrained( | |
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name | |
) | |
if dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
pipe.to(device) | |
return pipe | |
# def encode_prompt(prompt, tokenizer, text_encoder): | |
# text_inputs = tokenizer( | |
# prompt, | |
# padding="max_length", | |
# max_length=tokenizer.model_max_length, | |
# return_tensors="pt", | |
# ) | |
# with torch.no_grad(): | |
# if len(text_inputs.input_ids[0]) < tokenizer.model_max_length: | |
# prompt_embeds = text_encoder(text_inputs.input_ids.to(text_encoder.device))[0] | |
# else: | |
# embeds = [] | |
# start = 0 | |
# while start < tokenizer.model_max_length: | |
# end = start + tokenizer.model_max_length | |
# part_of_text_inputs = text_inputs.input_ids[0][start:end] | |
# if len(part_of_text_inputs) < tokenizer.model_max_length: | |
# part_of_text_inputs = torch.cat([part_of_text_inputs, torch.tensor([tokenizer.pad_token_id] * (tokenizer.model_max_length - len(part_of_text_inputs)))]) | |
# embeds.append(text_encoder(part_of_text_inputs.to(text_encoder.device).unsqueeze(0))[0]) | |
# start += int((8/ | |
# 11)*tokenizer.model_max_length) | |
# prompt_embeds = torch.mean(torch.stack(embeds, dim=0), dim=0) | |
# return prompt_embeds | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
model_id=model_id_default, | |
seed=42, | |
guidance_scale=7.0, | |
lora_scale=1.0, | |
num_inference_steps=20, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
pipe = get_lora_sd_pipeline(base_model_name_or_path=model_id) | |
pipe = pipe.to(device) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
pipe.safety_checker = None | |
# prompt_embeds = encode_prompt(prompt, pipe.tokenizer, pipe.text_encoder) | |
# negative_prompt_embeds = encode_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css, fill_height=True) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image demo") | |
with gr.Row(): | |
model_id = gr.Textbox( | |
label="Model ID", | |
max_lines=1, | |
placeholder="Enter model id", | |
value=model_id_default, | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter your negative prompt", | |
) | |
with gr.Row(): | |
seed = gr.Number( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=42, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.0, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, # Replace with defaults that work for your model | |
) | |
with gr.Accordion("Optional Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, # Replace with defaults that work for your model | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
model_id, | |
seed, | |
guidance_scale, | |
num_inference_steps, | |
lora_scale | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() |