File size: 9,993 Bytes
50ef0b7
 
 
 
 
73dd322
9333076
50ef0b7
d5745cb
50ef0b7
5280b61
50ef0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5280b61
 
 
 
 
 
 
d5745cb
5280b61
50ef0b7
 
 
 
 
 
 
 
716ff7f
daa1993
 
 
 
 
 
 
 
 
5280b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11dcdf1
 
 
 
3c4a949
ff1979b
5280b61
 
 
 
 
50ef0b7
 
 
 
 
 
 
 
 
 
d317594
 
 
 
 
50ef0b7
5280b61
d5745cb
 
 
 
 
50ef0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5745cb
 
 
 
 
50ef0b7
 
 
5e73db7
50ef0b7
c606e76
5280b61
c606e76
 
 
 
 
 
5280b61
c606e76
 
5280b61
c606e76
5280b61
 
c606e76
 
 
5280b61
c606e76
 
 
 
 
 
 
 
 
 
 
5280b61
c606e76
5e73db7
c606e76
5280b61
 
 
194fd97
 
 
 
 
5280b61
 
54ecd01
194fd97
5280b61
194fd97
5280b61
 
194fd97
 
50ef0b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5280b61
 
 
 
 
 
 
5e73db7
d5745cb
50ef0b7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
from diffusers.utils import load_image
from peft import PeftModel, LoraConfig
from rembg import remove


device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    width=512,
    height=512,
    model_id=model_id_default,
    seed=42,
    guidance_scale=7.0,
    lora_scale=1.0,
    num_inference_steps=20,
    controlnet_checkbox=False,
    controlnet_strength=0.0,
    controlnet_mode="edge_detection",
    controlnet_image=None,
    ip_adapter_checkbox=False,
    ip_adapter_scale=0.0,
    ip_adapter_image=None,
    del_background=False,
    progress=gr.Progress(track_tqdm=True),    
):  
    ckpt_dir='./model_output'
    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")

    if model_id is None:
        raise ValueError("Please specify the base model name or path")

    generator = torch.Generator(device).manual_seed(seed)
    params = {'prompt': prompt,
              'negative_prompt': negative_prompt,
              'guidance_scale': guidance_scale,
              'num_inference_steps': num_inference_steps,
              'width': width,
              'height': height,
              'generator': generator
             }

    if controlnet_checkbox:
        if controlnet_mode == "depth_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-depth",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "pose_estimation":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-openpose",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "normal_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-normal",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "scribbles":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-scribble",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        else:
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-canny",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, 
                                                                 controlnet=controlnet,
                                                                 torch_dtype=torch_dtype, 
                                                                 safety_checker=None).to(device)
        params['image'] = controlnet_image
        params['controlnet_conditioning_scale'] = float(controlnet_strength)
    else:
        pipe = StableDiffusionPipeline.from_pretrained(model_id, 
                                                       torch_dtype=torch_dtype, 
                                                       safety_checker=None).to(device)

    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
    pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)

    pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
    pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
    
    if torch_dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()

    if ip_adapter_checkbox:
        pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
        pipe.set_ip_adapter_scale(ip_adapter_scale)
        params['ip_adapter_image'] = ip_adapter_image

    pipe.to(device)

    if del_background:
        return remove(pipe(**params).images[0])
    else:
        return pipe(**params).images[0]


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

def controlnet_params(show_extra):
    return gr.update(visible=show_extra)
    
with gr.Blocks(css=css, fill_height=True) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image demo")

        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id",
                value=model_id_default,
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )
        
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter your negative prompt",
        )
        
        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=30.0,
                step=0.1,
                value=7.0,  # Replace with defaults that work for your model
            )
        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=1.0,
            )

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=20,  # Replace with defaults that work for your model
            )
        with gr.Row():
            del_background = gr.Checkbox(
                label="Delete background?",
                value=False
            )
        with gr.Row():
            controlnet_checkbox = gr.Checkbox(
                label="ControlNet",
                value=False
            )
            with gr.Column(visible=False) as controlnet_params:
                controlnet_strength = gr.Slider(
                    label="ControlNet conditioning scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                controlnet_mode = gr.Dropdown(
                    label="ControlNet mode",
                    choices=["edge_detection", 
                             "depth_map",
                             "pose_estimation", 
                             "normal_map",
                             "scribbles"],
                    value="edge_detection",
                    max_choices=1
                )
                controlnet_image = gr.Image(
                    label="ControlNet condition image",
                    type="pil",
                    format="png"
                )
            controlnet_checkbox.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=controlnet_checkbox,
                outputs=controlnet_params
            )

        with gr.Row():
            ip_adapter_checkbox = gr.Checkbox(
                label="IPAdapter",
                value=False
            )
            with gr.Column(visible=False) as ip_adapter_params:
                ip_adapter_scale = gr.Slider(
                    label="IPAdapter scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                ip_adapter_image = gr.Image(
                    label="IPAdapter condition image",
                    type="pil"
                )
            ip_adapter_checkbox.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=ip_adapter_checkbox,
                outputs=ip_adapter_params
            )
            
        with gr.Accordion("Optional Settings", open=False):
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )
        
        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
            
    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            model_id,
            seed,
            guidance_scale,      
            lora_scale,
            num_inference_steps,
            controlnet_checkbox,
            controlnet_strength,
            controlnet_mode,
            controlnet_image,
            ip_adapter_checkbox,
            ip_adapter_scale,
            ip_adapter_image,  
            del_background,
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()