Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,8 @@ import subprocess
|
|
2 |
import sys
|
3 |
|
4 |
subprocess.check_call([sys.executable,"-m","pip","install", 'torch'])
|
5 |
-
subprocess.check_call([sys.executable,"-m","pip","install",'causal-conv1d'])
|
6 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", 'numpy', 'miditok','
|
7 |
subprocess.check_call(["apt-get", "install", "timidity", "-y"])
|
8 |
|
9 |
# !pip install pretty_midi midi2audio
|
@@ -25,31 +25,15 @@ subprocess.check_call(["apt-get", "install", "timidity", "-y"])
|
|
25 |
# subprocess.check_call(['export', 'LIBRARY_PATH="/usr/local/cuda/lib64/stubs"'])
|
26 |
import os
|
27 |
|
28 |
-
|
29 |
-
os.environ['LD_LIBRARY_PATH'] = "/usr/lib64-nvidia"
|
30 |
-
os.environ['LIBRARY_PATH'] = "/usr/local/cuda/lib64/stubs"
|
31 |
-
|
32 |
|
33 |
|
34 |
import gradio as gr
|
35 |
import torch
|
36 |
-
from mamba_ssm import Mamba
|
37 |
-
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
|
38 |
-
from mamba_ssm.models.config_mamba import MambaConfig
|
39 |
import numpy as np
|
40 |
|
41 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
42 |
-
|
43 |
-
subprocess.check_call(['ldconfig', '/usr/lib64-nvidia'])
|
44 |
-
# !ldconfig /usr/lib64-nvidia
|
45 |
-
|
46 |
-
# !wget "https://huggingface.co/krystv/MIDI_Mamba-159M/resolve/main/MIDI_Mamba-159M_1536VS.pt"
|
47 |
-
# !wget "https://huggingface.co/krystv/MIDI_Mamba-159M/resolve/main/tokenizer_1536mix_BPE.json"
|
48 |
-
if os.path.isfile("MIDI_Mamba-159M_1536VS.pt") == False:
|
49 |
-
subprocess.check_call(['wget', 'https://huggingface.co/krystv/MIDI_Mamba-159M/resolve/main/MIDI_Mamba-159M_1536VS.pt'])
|
50 |
-
|
51 |
-
if os.path.isfile("tokenizer_1536mix_BPE.json") == False:
|
52 |
-
subprocess.check_call(['wget', 'https://huggingface.co/krystv/MIDI_Mamba-159M/resolve/main/tokenizer_1536mix_BPE.json'])
|
53 |
|
54 |
|
55 |
|
@@ -61,13 +45,15 @@ mc.vocab_size = 1536
|
|
61 |
from miditok import MIDILike,REMI,TokenizerConfig
|
62 |
from pathlib import Path
|
63 |
import torch
|
64 |
-
|
|
|
65 |
tokenizer = REMI(params='tokenizer_1536mix_BPE.json')
|
66 |
|
67 |
|
68 |
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
|
73 |
|
@@ -86,19 +72,20 @@ custom_html = f"""
|
|
86 |
"""
|
87 |
|
88 |
|
89 |
-
@spaces.GPU(duration=120)
|
90 |
def generate(number,top_k_selector,top_p_selector, temperature_selector):
|
91 |
-
input_ids = torch.tensor([[1,]])
|
92 |
-
|
|
|
|
|
93 |
input_ids=input_ids,
|
|
|
94 |
max_length=int(number),
|
95 |
temperature=temperature_selector,
|
96 |
top_p=top_p_selector,
|
97 |
top_k=top_k_selector,
|
98 |
|
99 |
eos_token_id=2,)
|
100 |
-
m = tokenizer.decode(np.array(out[0].
|
101 |
-
np.array(out.to('cpu')).shape
|
102 |
m.dump_midi('output.mid')
|
103 |
# !timidity output.mid -Ow -o - | ffmpeg -y -f wav -i - output.mp3
|
104 |
timidity_cmd = ['timidity', 'output.mid', '-Ow', '-o', 'output.wav']
|
@@ -123,17 +110,10 @@ def generate_and_save(number,top_k_selector,top_p_selector, temperature_selector
|
|
123 |
|
124 |
|
125 |
|
126 |
-
# iface = gr.Interface(fn=generate_and_save,
|
127 |
-
# inputs=[number_selector,top_k_selector,top_p_selector, temperature_selector,generate_button,custom_html_wid],
|
128 |
-
# outputs=[output_box,download_midi_button],
|
129 |
-
# title="MIDI Mamba-159M",submit_btn=False,
|
130 |
-
# clear_btn=False,
|
131 |
-
# description="MIDI Mamba is a Mamba based model trained on MIDI data collected from open internet to train music model.",
|
132 |
-
# allow_flagging=False,)
|
133 |
|
134 |
with gr.Blocks() as b1:
|
135 |
gr.Markdown("<h1 style='text-align: center;'>MIDI Mamba-159M <h1/> ")
|
136 |
-
gr.Markdown("<h3 style='text-align: center;'>MIDI Mamba is a Mamba based model trained on MIDI data collected from open internet to train music model. <br> by Hemant Kumar<h3/>")
|
137 |
with gr.Row():
|
138 |
with gr.Column():
|
139 |
number_selector = gr.Number(label="Select Length of output",value=512)
|
|
|
2 |
import sys
|
3 |
|
4 |
subprocess.check_call([sys.executable,"-m","pip","install", 'torch'])
|
5 |
+
# subprocess.check_call([sys.executable,"-m","pip","install",'causal-conv1d'])
|
6 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", 'numpy', 'miditok','transformers','gradio'])
|
7 |
subprocess.check_call(["apt-get", "install", "timidity", "-y"])
|
8 |
|
9 |
# !pip install pretty_midi midi2audio
|
|
|
25 |
# subprocess.check_call(['export', 'LIBRARY_PATH="/usr/local/cuda/lib64/stubs"'])
|
26 |
import os
|
27 |
|
28 |
+
from transformers import MambaConfig, MambaForCausalLM
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
import gradio as gr
|
32 |
import torch
|
|
|
|
|
|
|
33 |
import numpy as np
|
34 |
|
35 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
36 |
+
model = MambaForCausalLM.from_pretrained("krystv/MIDI_Mamba-159M")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
|
|
|
45 |
from miditok import MIDILike,REMI,TokenizerConfig
|
46 |
from pathlib import Path
|
47 |
import torch
|
48 |
+
if os.path.isfile("tokenizer_1536mix_BPE.json") == False:
|
49 |
+
subprocess.check_call(['wget', 'https://huggingface.co/krystv/MIDI_Mamba-159M/resolve/main/tokenizer_1536mix_BPE.json'])
|
50 |
tokenizer = REMI(params='tokenizer_1536mix_BPE.json')
|
51 |
|
52 |
|
53 |
|
54 |
+
if torch.cuda.is_available():
|
55 |
+
model= model.to(device)
|
56 |
+
|
57 |
|
58 |
|
59 |
|
|
|
72 |
"""
|
73 |
|
74 |
|
|
|
75 |
def generate(number,top_k_selector,top_p_selector, temperature_selector):
|
76 |
+
input_ids = torch.tensor([[1,]])
|
77 |
+
if torch.cuda.is_available():
|
78 |
+
input_ids = input_ids.to(device)
|
79 |
+
out = model.generate(
|
80 |
input_ids=input_ids,
|
81 |
+
do_sample=True,
|
82 |
max_length=int(number),
|
83 |
temperature=temperature_selector,
|
84 |
top_p=top_p_selector,
|
85 |
top_k=top_k_selector,
|
86 |
|
87 |
eos_token_id=2,)
|
88 |
+
m = tokenizer.decode(np.array(out[0].cpu()))
|
|
|
89 |
m.dump_midi('output.mid')
|
90 |
# !timidity output.mid -Ow -o - | ffmpeg -y -f wav -i - output.mp3
|
91 |
timidity_cmd = ['timidity', 'output.mid', '-Ow', '-o', 'output.wav']
|
|
|
110 |
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
with gr.Blocks() as b1:
|
115 |
gr.Markdown("<h1 style='text-align: center;'>MIDI Mamba-159M <h1/> ")
|
116 |
+
gr.Markdown("<h3 style='text-align: center;'>MIDI Mamba is a Mamba based model trained on MIDI data collected from open internet to train music model. Current accuracy is performance is decreased due to model conversion make sure to checkout the <a href='https://colab.research.google.com/github/HemantKArya/MIDI_Mamba/blob/main/MIDI_Mamba.ipynb'>colab notebook<a/> <br> by Hemant Kumar<h3/>")
|
117 |
with gr.Row():
|
118 |
with gr.Column():
|
119 |
number_selector = gr.Number(label="Select Length of output",value=512)
|