File size: 7,520 Bytes
d453da8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18e4a0a
d453da8
 
18e4a0a
d453da8
 
 
 
 
 
 
 
 
 
 
 
 
 
18e4a0a
d453da8
 
 
 
 
 
552fb09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056a2b4
552fb09
 
 
 
 
056a2b4
 
 
 
552fb09
 
18e4a0a
d453da8
 
552fb09
d453da8
 
 
 
552fb09
d453da8
552fb09
d453da8
 
18e4a0a
552fb09
18e4a0a
552fb09
 
d453da8
 
552fb09
2f4a410
d453da8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

api_key = os.environ['API_TOKEN'] 

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def generate_answer(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(api_key, prompt,"text-davinci-003")
    return answer


def question_answer(url, file, question):
    #if openAI_key.strip()=='':
    #    return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
    if url.strip() == '' and file == None:
        return '[ERROR]: URL 和 PDF 都是空的。至少提供一个。'
    
    if url.strip() != '' and file != None:
        return '[ERROR]: 提供了 URL 和 PDF。请仅提供一个(网址或 PDF)。'

    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf')

    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]
        os.rename(old_file_name, file_name)
        load_recommender(file_name)

    if question.strip() == '':
        return '[ERROR]: 问题字段为空'

    return generate_answer(question,api_key)


recommender = SemanticSearch()

css = """ 
        .gradio-container {
            background-image: linear-gradient(#d7d7d7, #f2f2f2);
            padding: 0;
            
        }
        .app.svelte-p7tiy3.svelte-p7tiy3 {
            padding: 10;
        }
        .padded.svelte-faijhx {
            padding: 30px 0 30px 0;
            background-color: transparent;
        }
        #markdown-or{
            background-color: transparent;
        }
        
        :root,.gradio-container-3-20-1 :host {
          --color-border-primary:transparent;
        }
        
        #submit_button{
            background-color: #fff;
            font-weight: bold;
            box-shadow: 5px 10px 18px #fff;
        }

        footer {
            visibility: hidden;
        }
"""

title = 'AI Pdf 归纳器'
#description = """ KrystalPDF AI allows you to chat with your PDF file. It gives hallucination free response than other tools. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""

with gr.Blocks(css=css) as demo:

    #gr.Markdown(f'<center><h1>{title}</h1></center>')
    #gr.Markdown(description)

    with gr.Row(css=css):
        
        with gr.Group(css=css):
            #gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
            #openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
            url = gr.Textbox(label='在此处输入 PDF 网址')
            gr.Markdown("<center>或</center>", elem_id="markdown-or")
            file = gr.File(label='在此处上传您的 PDF/研究论文/书籍', file_types=['.pdf'])
            question = gr.Textbox(label='在这里输入您的问题', elem_id="question")
            btn = gr.Button(value='提交', elem_id="submit_button")
            btn.style(full_width=True)

            answer = gr.Textbox(label='你的提问的答案是:', elem_id="answer")
            
        btn.click(question_answer, inputs=[url, file, question], outputs=[answer])
demo.launch()