Spaces:
Runtime error
Runtime error
File size: 7,600 Bytes
e54eaf4 7e8daf1 e54eaf4 7e8daf1 e54eaf4 7e8daf1 e54eaf4 59ea7b6 68f542f 59ea7b6 68f542f 59ea7b6 7e8daf1 e54eaf4 59ea7b6 e54eaf4 59ea7b6 e54eaf4 59ea7b6 e54eaf4 7e8daf1 59ea7b6 812cbb1 13856a1 59ea7b6 e54eaf4 13856a1 e54eaf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors
api_key = os.environ['API_TOKEN']
def download_pdf(url, output_path):
urllib.request.urlretrieve(url, output_path)
def preprocess(text):
text = text.replace('\n', ' ')
text = re.sub('\s+', ' ', text)
return text
def pdf_to_text(path, start_page=1, end_page=None):
doc = fitz.open(path)
total_pages = doc.page_count
if end_page is None:
end_page = total_pages
text_list = []
for i in range(start_page-1, end_page):
text = doc.load_page(i).get_text("text")
text = preprocess(text)
text_list.append(text)
doc.close()
return text_list
def text_to_chunks(texts, word_length=150, start_page=1):
text_toks = [t.split(' ') for t in texts]
page_nums = []
chunks = []
for idx, words in enumerate(text_toks):
for i in range(0, len(words), word_length):
chunk = words[i:i+word_length]
if (i+word_length) > len(words) and (len(chunk) < word_length) and (
len(text_toks) != (idx+1)):
text_toks[idx+1] = chunk + text_toks[idx+1]
continue
chunk = ' '.join(chunk).strip()
chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
chunks.append(chunk)
return chunks
class SemanticSearch:
def __init__(self):
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
self.fitted = False
def fit(self, data, batch=1000, n_neighbors=5):
self.data = data
self.embeddings = self.get_text_embedding(data, batch=batch)
n_neighbors = min(n_neighbors, len(self.embeddings))
self.nn = NearestNeighbors(n_neighbors=n_neighbors)
self.nn.fit(self.embeddings)
self.fitted = True
def __call__(self, text, return_data=True):
inp_emb = self.use([text])
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
if return_data:
return [self.data[i] for i in neighbors]
else:
return neighbors
def get_text_embedding(self, texts, batch=1000):
embeddings = []
for i in range(0, len(texts), batch):
text_batch = texts[i:(i+batch)]
emb_batch = self.use(text_batch)
embeddings.append(emb_batch)
embeddings = np.vstack(embeddings)
return embeddings
def load_recommender(path, start_page=1):
global recommender
texts = pdf_to_text(path, start_page=start_page)
chunks = text_to_chunks(texts, start_page=start_page)
recommender.fit(chunks)
return 'Corpus Loaded.'
def generate_text(openAI_key,prompt, engine="text-davinci-003"):
openai.api_key = openAI_key
completions = openai.Completion.create(
engine=engine,
prompt=prompt,
max_tokens=512,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text
return message
def generate_answer(question,openAI_key):
topn_chunks = recommender(question)
prompt = ""
prompt += 'search results:\n\n'
for c in topn_chunks:
prompt += c + '\n\n'
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
"with the same name, create separate answers for each. Only include information found in the results and "\
"don't add any additional information. Make sure the answer is correct and don't output false content. "\
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
"search results which has nothing to do with the question. Only answer what is asked. The "\
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "
prompt += f"Query: {question}\nAnswer:"
answer = generate_text(api_key, prompt,"text-davinci-003")
return answer
def question_answer(url, file, question):
#if openAI_key.strip()=='':
# return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
if url.strip() == '' and file == None:
return '[ERROR]: URL 和 PDF 都是空的。 至少提供一個。'
if url.strip() != '' and file != None:
return '[ERROR]: 提供了 URL 和 PDF。 請僅提供一個(網址或 PDF)。'
if url.strip() != '':
glob_url = url
download_pdf(glob_url, 'corpus.pdf')
load_recommender('corpus.pdf')
else:
old_file_name = file.name
file_name = file.name
file_name = file_name[:-12] + file_name[-4:]
os.rename(old_file_name, file_name)
load_recommender(file_name)
if question.strip() == '':
return '[ERROR]: 問題字段為空'
return generate_answer(question,api_key)
recommender = SemanticSearch()
css = """
.gradio-container {
background-image: linear-gradient(#d7d7d7, #f2f2f2);
padding: 0;
}
.app.svelte-p7tiy3.svelte-p7tiy3 {
padding: 10;
}
.padded.svelte-faijhx {
padding: 30px 0 30px 0;
background-color: transparent;
}
#markdown-or{
background-color: transparent;
}
:root,.gradio-container-3-20-1 :host {
--color-border-primary:transparent;
}
#submit_button{
background-color: #fff;
font-weight: bold;
box-shadow: 5px 10px 18px #fff;
}
footer {
visibility: hidden;
}
"""
title = 'AI Pdf 歸納器'
#description = """ KrystalPDF AI allows you to chat with your PDF file. It gives hallucination free response than other tools. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""
with gr.Blocks(css=css) as demo:
#gr.Markdown(f'<center><h1>{title}</h1></center>')
#gr.Markdown(description)
with gr.Row(css=css):
with gr.Group(css=css):
#gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
#openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
url = gr.Textbox(label='在此處輸入 PDF 網址')
gr.Markdown("<center>或</center>", elem_id="markdown-or")
file = gr.File(label='在此處上傳您的 PDF/研究論文/書籍', file_types=['.pdf'], placeholder="將文件拖放到此處 或 點擊上傳")
question = gr.Textbox(label='在這裡輸入您的問題', elem_id="question")
btn = gr.Button(value='提交', elem_id="submit_button")
btn.style(full_width=True)
answer = gr.Textbox(label='你的提問的答案是:', show_copy_button=True)
#openAI_key=api_key
btn.click(question_answer, inputs=[url, file, question], outputs=[answer])
demo.launch()
|