|
import requests |
|
from PIL import Image |
|
import streamlit as st |
|
|
|
from transformers import AutoTokenizer, AutoModelForImageTextToText |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/trocr-large-printed") |
|
model = AutoModelForImageTextToText.from_pretrained("microsoft/trocr-large-printed") |
|
|
|
st.title("Duh!") |
|
|
|
|
|
url = "https://parivahan.gov.in/rcdlstatus/DispplayCaptcha?txtp_cd=1&bkgp_cd=2&noise_cd=2&gimp_cd=3&txtp_length=5&pfdrid_c=true?1429026471&pfdrid_c=true" |
|
image = Image.open(requests.get(url, stream=True).raw).convert("RGB") |
|
|
|
col1, col2 = st.columns(2) |
|
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-printed') |
|
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-large-printed') |
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values |
|
|
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
col1.image(image, use_column_width=True) |
|
col2.subheader(f"Detected Text: {generated_text}") |