Update app.py
Browse files
app.py
CHANGED
|
@@ -1,234 +1,15 @@
|
|
| 1 |
-
import os
|
| 2 |
import streamlit as st
|
| 3 |
-
import spacy
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import re
|
| 6 |
-
from transformers import pipeline
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
st.
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
if
|
| 16 |
-
st.
|
| 17 |
-
if "pdf_tables" not in st.session_state:
|
| 18 |
-
st.session_state["pdf_tables"] = [] # Default to an empty list
|
| 19 |
-
if "nlp" not in st.session_state:
|
| 20 |
-
st.session_state["nlp"] = None
|
| 21 |
-
if "summarizer" not in st.session_state:
|
| 22 |
-
st.session_state["summarizer"] = None
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
st.
|
| 27 |
-
st.write("spaCy model loaded successfully.")
|
| 28 |
-
except OSError:
|
| 29 |
-
st.session_state["nlp"] = None
|
| 30 |
-
st.write("Failed to load spaCy model.")
|
| 31 |
-
|
| 32 |
-
# Load the summarization model from Hugging Face Model Hub
|
| 33 |
-
try:
|
| 34 |
-
online_model_path = "kritsadaK/bart-financial-summarization"
|
| 35 |
-
st.session_state["summarizer"] = pipeline(
|
| 36 |
-
"summarization",
|
| 37 |
-
model=online_model_path,
|
| 38 |
-
tokenizer=online_model_path
|
| 39 |
-
)
|
| 40 |
-
st.write("Online summarization model loaded successfully.")
|
| 41 |
-
except Exception:
|
| 42 |
-
st.session_state["summarizer"] = None
|
| 43 |
-
st.write("Failed to load online summarization model.")
|
| 44 |
-
|
| 45 |
-
# Now it's safe to access session state variables
|
| 46 |
-
if st.session_state["pdf_text"]:
|
| 47 |
-
st.text_area("Extracted Text", st.session_state["pdf_text"], height=400)
|
| 48 |
-
else:
|
| 49 |
-
st.warning("No text extracted yet. Upload a PDF to start.")
|
| 50 |
-
|
| 51 |
-
# Define regex patterns to extract structured data
|
| 52 |
-
patterns = {
|
| 53 |
-
"Fund Name": r"^(.*?) Fund", # Extracts the name before "Fund"
|
| 54 |
-
"CUSIP": r"CUSIP\s+(\d+)",
|
| 55 |
-
"Inception Date": r"Inception Date\s+([\w\s\d]+)",
|
| 56 |
-
"Benchmark": r"Benchmark\s+([\w\s\d]+)",
|
| 57 |
-
"Expense Ratio": r"Expense Information.*?(\d+\.\d+%)",
|
| 58 |
-
"Total Assets": r"Total Assets\s+USD\s+([\d,]+)",
|
| 59 |
-
"Portfolio Turnover": r"Portfolio Holdings Turnover.*?(\d+\.\d+%)",
|
| 60 |
-
"Cash Allocation": r"% of Portfolio in Cash\s+(\d+\.\d+%)",
|
| 61 |
-
"Alpha": r"Alpha\s+(-?\d+\.\d+%)",
|
| 62 |
-
"Standard Deviation": r"Standard Deviation\s+(\d+\.\d+%)"
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
# Set the title and layout
|
| 66 |
-
st.title("FinBrief: Financial Document Insights")
|
| 67 |
-
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
|
| 68 |
-
|
| 69 |
-
# Custom styling
|
| 70 |
-
st.markdown(
|
| 71 |
-
"""
|
| 72 |
-
<style>
|
| 73 |
-
.sidebar .sidebar-content {
|
| 74 |
-
background-color: #f7f7f7;
|
| 75 |
-
color: #333;
|
| 76 |
-
}
|
| 77 |
-
.css-1d391kg {
|
| 78 |
-
background-color: #f0f4f8;
|
| 79 |
-
}
|
| 80 |
-
.stButton>button {
|
| 81 |
-
background-color: #4CAF50;
|
| 82 |
-
color: white;
|
| 83 |
-
padding: 10px 20px;
|
| 84 |
-
border-radius: 5px;
|
| 85 |
-
font-size: 16px;
|
| 86 |
-
}
|
| 87 |
-
.stTextArea textarea {
|
| 88 |
-
border: 2px solid #4CAF50;
|
| 89 |
-
border-radius: 5px;
|
| 90 |
-
padding: 10px;
|
| 91 |
-
}
|
| 92 |
-
</style>
|
| 93 |
-
""",
|
| 94 |
-
unsafe_allow_html=True,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
# Function to extract text and tables using pdfplumber
|
| 98 |
-
def extract_text_tables_pdfplumber(pdf_file):
|
| 99 |
-
import io
|
| 100 |
-
import pdfplumber
|
| 101 |
-
|
| 102 |
-
print("\n🔹 PDFPlumber: Extracting text and tables...")
|
| 103 |
-
with pdfplumber.open(io.BytesIO(pdf_file.read())) as pdf:
|
| 104 |
-
all_text = ""
|
| 105 |
-
all_tables = []
|
| 106 |
-
|
| 107 |
-
for page in pdf.pages:
|
| 108 |
-
page_text = page.extract_text()
|
| 109 |
-
if page_text:
|
| 110 |
-
all_text += page_text + "\n"
|
| 111 |
-
|
| 112 |
-
# Extract tables
|
| 113 |
-
tables = page.extract_tables()
|
| 114 |
-
all_tables.extend(tables) # Store all tables
|
| 115 |
-
|
| 116 |
-
if all_text.strip():
|
| 117 |
-
print(all_text[:1000]) # Print first 1000 characters for verification
|
| 118 |
-
return all_text, all_tables
|
| 119 |
-
else:
|
| 120 |
-
print("No text extracted. The PDF might be image-based.")
|
| 121 |
-
return None, None
|
| 122 |
-
|
| 123 |
-
# Step 0: Upload PDF
|
| 124 |
-
st.sidebar.header("Upload Your Financial Document")
|
| 125 |
-
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")
|
| 126 |
-
|
| 127 |
-
if uploaded_file is not None:
|
| 128 |
-
st.sidebar.write(f"You uploaded: {uploaded_file.name}")
|
| 129 |
-
|
| 130 |
-
# Extract text and tables
|
| 131 |
-
pdf_text, pdf_tables = extract_text_tables_pdfplumber(uploaded_file)
|
| 132 |
-
|
| 133 |
-
if pdf_text is not None:
|
| 134 |
-
# Store results in session state
|
| 135 |
-
st.session_state["pdf_text"] = pdf_text
|
| 136 |
-
st.session_state["pdf_tables"] = pdf_tables # Save tables separately
|
| 137 |
-
|
| 138 |
-
st.sidebar.success("PDF uploaded and text extracted!")
|
| 139 |
-
else:
|
| 140 |
-
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
|
| 141 |
-
st.error("No text extracted from the uploaded PDF.")
|
| 142 |
-
|
| 143 |
-
# Step 1: Display Extracted Text
|
| 144 |
-
st.subheader("Extracted Text")
|
| 145 |
-
if st.session_state["pdf_text"]:
|
| 146 |
-
st.text_area("Document Text", st.session_state["pdf_text"], height=400)
|
| 147 |
-
else:
|
| 148 |
-
st.warning("No text extracted yet. Upload a PDF to start.")
|
| 149 |
-
|
| 150 |
-
# Step 2: Display Extracted Tables
|
| 151 |
-
st.subheader("Extracted Tables")
|
| 152 |
-
if st.session_state["pdf_tables"]: # Check if tables exist
|
| 153 |
-
for idx, table in enumerate(st.session_state["pdf_tables"]):
|
| 154 |
-
st.write(f"Table {idx+1}")
|
| 155 |
-
st.write(pd.DataFrame(table)) # Display tables as DataFrames
|
| 156 |
-
else:
|
| 157 |
-
st.info("No tables extracted.")
|
| 158 |
-
|
| 159 |
-
# Retrieve variables from session state
|
| 160 |
-
nlp = st.session_state["nlp"]
|
| 161 |
-
summarizer = st.session_state["summarizer"]
|
| 162 |
-
pdf_text = st.session_state["pdf_text"]
|
| 163 |
-
pdf_tables = st.session_state["pdf_tables"]
|
| 164 |
-
|
| 165 |
-
# Ensure that the models are loaded
|
| 166 |
-
if nlp is None or summarizer is None:
|
| 167 |
-
st.error("Models are not properly loaded. Please check your model paths and installation.")
|
| 168 |
-
else:
|
| 169 |
-
# Step 3: Named Entity Recognition (NER)
|
| 170 |
-
st.subheader("NER Analysis")
|
| 171 |
-
|
| 172 |
-
# Display full extracted text, not just first 1000 characters
|
| 173 |
-
example_text = st.text_area(
|
| 174 |
-
"Enter or paste text for analysis",
|
| 175 |
-
height=400,
|
| 176 |
-
value=st.session_state["pdf_text"] if st.session_state["pdf_text"] else ""
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
if st.button("Analyze"):
|
| 180 |
-
# Ensure full extracted text is used for analysis
|
| 181 |
-
text_for_analysis = st.session_state["pdf_text"].strip() if st.session_state["pdf_text"] else example_text.strip()
|
| 182 |
-
|
| 183 |
-
if text_for_analysis:
|
| 184 |
-
with st.spinner("Analyzing text..."):
|
| 185 |
-
# Extract structured financial data using regex (Now using full text)
|
| 186 |
-
extracted_data = {
|
| 187 |
-
key: (match.group(1) if match else "N/A")
|
| 188 |
-
for key, pattern in patterns.items()
|
| 189 |
-
if (match := re.search(pattern, text_for_analysis, re.IGNORECASE))
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
# Use spaCy to extract additional financial terms (Now using full text)
|
| 193 |
-
doc = nlp(text_for_analysis)
|
| 194 |
-
financial_entities = [(ent.text, ent.label_) for ent in doc.ents if ent.label_ in ["MONEY", "PERCENT", "ORG", "DATE"]]
|
| 195 |
-
|
| 196 |
-
# Store extracted data in a structured dictionary
|
| 197 |
-
structured_data = {**extracted_data, "Named Entities Extracted": financial_entities}
|
| 198 |
-
|
| 199 |
-
# Display results
|
| 200 |
-
st.write("Entities Found:")
|
| 201 |
-
st.write(pd.DataFrame(financial_entities, columns=["Entity", "Label"]))
|
| 202 |
-
|
| 203 |
-
st.write("Structured Data Extracted:")
|
| 204 |
-
st.write(pd.DataFrame([structured_data]))
|
| 205 |
-
|
| 206 |
-
else:
|
| 207 |
-
st.error("Please provide some text for analysis.")
|
| 208 |
-
|
| 209 |
-
# Step 4: Summarization
|
| 210 |
-
st.subheader("Summarization")
|
| 211 |
-
|
| 212 |
-
# Display full extracted text, not just first 1000 characters
|
| 213 |
-
input_text = st.text_area(
|
| 214 |
-
"Enter text to summarize",
|
| 215 |
-
height=400,
|
| 216 |
-
value=st.session_state["pdf_text"] if st.session_state["pdf_text"] else ""
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
if st.button("Summarize"):
|
| 220 |
-
# Ensure full extracted text is used for summarization
|
| 221 |
-
text_to_summarize = st.session_state["pdf_text"].strip() if st.session_state["pdf_text"] else input_text.strip()
|
| 222 |
-
|
| 223 |
-
if text_to_summarize:
|
| 224 |
-
with st.spinner("Generating summary..."):
|
| 225 |
-
summary = summarizer(
|
| 226 |
-
text_to_summarize,
|
| 227 |
-
max_length=min(len(text_to_summarize.split()), 1024),
|
| 228 |
-
min_length=100,
|
| 229 |
-
do_sample=False
|
| 230 |
-
)
|
| 231 |
-
st.write("Summary:")
|
| 232 |
-
st.success(summary[0]["summary_text"])
|
| 233 |
-
else:
|
| 234 |
-
st.error("Please provide text to summarize.")
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# Set the title of the app
|
| 4 |
+
st.title("My Simple Streamlit App")
|
| 5 |
|
| 6 |
+
# Add a text input
|
| 7 |
+
user_input = st.text_input("Enter some text:")
|
| 8 |
|
| 9 |
+
# Display user input
|
| 10 |
+
if user_input:
|
| 11 |
+
st.write(f"You entered: {user_input}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# Add a button
|
| 14 |
+
if st.button("Click Me!"):
|
| 15 |
+
st.write("Button clicked!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|