File size: 20,644 Bytes
1f47b27
67b15b5
 
 
4af7b86
7e5debb
a5cd600
 
 
 
 
 
 
d59e674
 
 
9bd38f7
dd19cfd
4af7b86
dd19cfd
 
67b15b5
7e5debb
4af7b86
dd19cfd
67b15b5
4af7b86
 
7e5debb
dd19cfd
 
4af7b86
dd19cfd
 
4af7b86
 
 
67b15b5
dd19cfd
4af7b86
67b15b5
302313f
 
dd19cfd
4af7b86
 
67b15b5
4af7b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19cfd
67b15b5
 
 
 
 
3b15327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd19cfd
 
 
67b15b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b15327
67b15b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ff57b
a577382
fab7896
 
 
 
 
a577382
 
 
 
 
 
 
 
fab7896
a577382
 
 
 
fab7896
 
 
 
 
 
a577382
 
 
 
67b15b5
a577382
 
 
 
 
 
 
 
d59e674
67b15b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd38f7
67b15b5
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd38f7
67b15b5
 
 
 
 
 
 
 
 
 
 
9bd38f7
67b15b5
 
9bd38f7
67b15b5
 
 
9bd38f7
67b15b5
 
9bd38f7
67b15b5
 
9bd38f7
a577382
5d6cd67
8f171fe
a577382
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a577382
4ce79b6
 
 
 
 
 
9bd38f7
 
 
4ce79b6
 
 
 
 
 
 
9bd38f7
 
 
 
 
 
a577382
4ce79b6
 
 
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce79b6
9bd38f7
4ce79b6
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce79b6
a577382
9bd38f7
a577382
 
9bd38f7
 
 
 
 
 
a577382
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
a577382
 
4ce79b6
 
 
 
 
a577382
9bd38f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import streamlit as st
import spacy
import pandas as pd
import re
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import subprocess
import os
os.environ["TRANSFORMERS_CACHE"] = "/home/user/.cache/huggingface"
os.environ["HF_HOME"] = "/home/user/.cache/huggingface"
os.environ["TORCH_HOME"] = "/home/user/.cache/torch"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

import torch
import nltk
from nltk.tokenize import sent_tokenize
import traceback 
from collections import Counter

# Set Streamlit page config
st.set_page_config(page_title="FinBrief: Financial Document Insights", layout="wide")

try:
    nlp = spacy.load("en_core_web_sm")
    st.write("spaCy model loaded successfully!")
    print("spaCy model loaded successfully!")
except OSError:
    st.write("Failed to load spaCy model. Attempting to install...")
    print("Failed to load spaCy model. Attempting to install...")
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    try:
        nlp = spacy.load("en_core_web_sm")
        st.write("spaCy model installed and loaded successfully!")
        print("spaCy model installed and loaded successfully!")
    except Exception as e:
        st.write(f"Still failed to load spaCy model: {e}")
        print(f"Still failed to load spaCy model: {e}")
        nlp = None  # Mark spaCy as failed

model_name = "kritsadaK/bart-financial-summarization"

try:
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
    summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
    st.write("Hugging Face summarization model loaded successfully!")
    print("Hugging Face summarization model loaded successfully!")
except Exception as e:
    st.write(f"Failed to load Hugging Face summarization model: {e}")
    print(f"Failed to load Hugging Face summarization model: {e}")
    summarizer = None  # Mark Hugging Face model as failed

# Store models in Streamlit session state
st.session_state["nlp"] = nlp
st.session_state["summarizer"] = summarizer

# UI: Show clear error messages if models failed
if nlp is None:
    st.error("The spaCy model failed to load. Ensure it is installed.")
if summarizer is None:
    st.error("The summarization model failed to load. Check the model path or internet connection.")

st.title("FinBrief: Financial Document Insights")
st.write("Upload a financial document for analysis.")

# Initialize session state
if "nlp" not in st.session_state:
    st.session_state["nlp"] = nlp
if "summarizer" not in st.session_state:
    st.session_state["summarizer"] = summarizer

# Set up NLTK data directory
nltk_data_dir = os.path.join(os.getcwd(), 'nltk_data')
if not os.path.exists(nltk_data_dir):
    os.makedirs(nltk_data_dir)
nltk.data.path.append(nltk_data_dir)

def download_nltk_punkt():
    try:
        nltk.data.find('tokenizers/punkt')
        st.write("NLTK 'punkt' tokenizer is already installed.")
        print("NLTK 'punkt' tokenizer is already installed.")
    except LookupError:
        st.write("NLTK 'punkt' tokenizer not found. Attempting to download...")
        print("NLTK 'punkt' tokenizer not found. Attempting to download...")
        try:
            nltk.download('punkt', download_dir=nltk_data_dir, quiet=True)
            nltk.data.find('tokenizers/punkt')
            st.write("NLTK 'punkt' tokenizer downloaded successfully.")
            print("NLTK 'punkt' tokenizer downloaded successfully.")
        except Exception as e:
            st.error(f"NLTK 'punkt' tokenizer download failed: {e}")
            print(f"NLTK 'punkt' tokenizer download failed: {e}")

# Call the function at the beginning of script
download_nltk_punkt()

# Debugging: Check session state initialization
print(f"Session State - NLP: {st.session_state['nlp'] is not None}, Summarizer: {st.session_state['summarizer'] is not None}")

# Define regex patterns to extract structured data
patterns = {
    "Fund Name": r"^(.*?) Fund",  # Extracts the name before "Fund"
    "CUSIP": r"CUSIP\s+(\d+)",
    "Inception Date": r"Inception Date\s+([\w\s\d]+)",
    "Benchmark": r"Benchmark\s+([\w\s\d]+)",
    "Expense Ratio": r"Expense Information.*?(\d+\.\d+%)",
    "Total Assets": r"Total Assets\s+USD\s+([\d,]+)",
    "Portfolio Turnover": r"Portfolio Holdings Turnover.*?(\d+\.\d+%)",
    "Cash Allocation": r"% of Portfolio in Cash\s+(\d+\.\d+%)",
    "Alpha": r"Alpha\s+(-?\d+\.\d+%)",
    "Standard Deviation": r"Standard Deviation\s+(\d+\.\d+%)"
}

# Set the title and layout
st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")

# Custom styling (this remains unchanged)
st.markdown(
    """
    <style>
    .sidebar .sidebar-content {
        background-color: #f7f7f7;
        color: #333;
    }
    .css-1d391kg {
        background-color: #f0f4f8;
    }
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        padding: 10px 20px;
        border-radius: 5px;
        font-size: 16px;
    }
    .stTextArea textarea {
        border: 2px solid #4CAF50;
        border-radius: 5px;
        padding: 10px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Function to extract text and tables using pdfplumber
def extract_text_tables_pdfplumber(pdf_file):
    import io
    import pdfplumber

    print("\nPDFPlumber: Extracting text and tables...")
    with pdfplumber.open(io.BytesIO(pdf_file.read())) as pdf:
        all_text = ""
        all_tables = []

        for page in pdf.pages:
            page_text = page.extract_text()
            if page_text:
                all_text += page_text + "\n"

            # Extract tables
            tables = page.extract_tables()
            all_tables.extend(tables)  # Store all tables

        if all_text.strip():
            print(all_text[:1000])  # Print first 1000 characters for verification
            return all_text, all_tables
        else:
            print("No text extracted. The PDF might be image-based.")
            return None, None

# NEW: Function to evaluate chunk relevance
def evaluate_chunk_relevance(chunk, keywords=None):
    """
    Evaluate the relevance of a text chunk based on various factors.
    Returns a score representing the chunk's relevance.
    """
    if not keywords:
        # Default financial keywords
        keywords = ["fund", "portfolio", "performance", "return", "asset", "investment", 
                    "expense", "risk", "benchmark", "allocation", "strategy", "market",
                    "growth", "income", "dividend", "yield", "capital", "equity", "bond",
                    "summary", "overview", "highlight", "key", "important", "significant"]
    
    score = 0
    
    # Factor 1: Length of the chunk (longer chunks often contain more information)
    word_count = len(chunk.split())
    score += min(word_count / 100, 5)  # Cap at 5 points
    
    # Factor 2: Keyword presence
    # Count keywords in lowercase text
    lower_chunk = chunk.lower()
    keyword_count = sum(1 for keyword in keywords if keyword.lower() in lower_chunk)
    keyword_density = keyword_count / max(1, word_count) * 100
    score += min(keyword_density * 2, 10)  # Cap at 10 points
    
    # Factor 3: Presence of numbers (financial documents often contain important numbers)
    number_count = len(re.findall(r'\d+\.?\d*%?', chunk))
    score += min(number_count / 5, 5)  # Cap at 5 points
    
    # Factor 4: Structured information (lists, tables, etc.)
    bullet_count = len(re.findall(r'•|\*|-|–|[0-9]+\.', chunk))
    score += min(bullet_count, 5)  # Cap at 5 points
    
    # Factor 5: Presence of section headers
    header_patterns = [
        r'^[A-Z][A-Za-z\s]+:',  # Title followed by colon
        r'^[A-Z][A-Z\s]+',      # ALL CAPS text
        r'^\d+\.\s+[A-Z]'       # Numbered section
    ]
    header_count = sum(1 for pattern in header_patterns if re.search(pattern, chunk, re.MULTILINE))
    score += min(header_count * 2, 5)  # Cap at 5 points
    
    return score

# NEW: Function to rank and select the best chunks
def rank_and_select_chunks(chunks, max_chunks=5, keywords=None):
    """
    Rank chunks by relevance and return the top chunks.
    """
    # Evaluate each chunk
    chunk_scores = [(chunk, evaluate_chunk_relevance(chunk, keywords)) for chunk in chunks]
    
    # Sort chunks by score (highest first)
    sorted_chunks = sorted(chunk_scores, key=lambda x: x[1], reverse=True)
    
    # Select the top N chunks
    top_chunks = [chunk for chunk, score in sorted_chunks[:max_chunks]]
    
    # Print scores for debugging
    print("Chunk scores:")
    for i, (chunk, score) in enumerate(sorted_chunks):
        print(f"Chunk {i+1}: Score {score:.2f}, Length {len(chunk.split())} words")
        print(f"First 100 chars: {chunk[:100]}...")
    
    return top_chunks

def split_text_into_chunks(text, tokenizer, max_tokens=256):
    sentences = nltk.sent_tokenize(text)
    chunks = []
    current_chunk = ''
    current_length = 0

    for sentence in sentences:
        sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
        sentence_length = len(sentence_tokens)

        # If adding the next sentence exceeds the max_tokens limit
        if current_length + sentence_length > max_tokens:
            if current_chunk:
                chunks.append(current_chunk.strip())
            # Start a new chunk
            current_chunk = sentence
            current_length = sentence_length
        else:
            current_chunk += ' ' + sentence
            current_length += sentence_length

    if current_chunk:
        chunks.append(current_chunk.strip())

    return chunks

def remove_duplicate_sentences(text):
    sentences = nltk.sent_tokenize(text)
    unique_sentences = []
    seen_sentences = set()

    for sentence in sentences:
        # Normalize the sentence to ignore case and punctuation for comparison
        normalized_sentence = sentence.strip().lower()
        if normalized_sentence not in seen_sentences:
            seen_sentences.add(normalized_sentence)
            unique_sentences.append(sentence)

    return ' '.join(unique_sentences)

# Ensure session state is initialized
if "pdf_text" not in st.session_state:
    st.session_state["pdf_text"] = ""
if "pdf_tables" not in st.session_state:
    st.session_state["pdf_tables"] = []  # Initialize as an empty list

# Step 0: Upload PDF
st.sidebar.header("Upload Your Financial Document")
uploaded_file = st.sidebar.file_uploader("Choose a PDF file", type="pdf")

if uploaded_file is not None:
    st.sidebar.write(f"You uploaded: {uploaded_file.name}")

    # Extract text and tables
    pdf_text, pdf_tables = extract_text_tables_pdfplumber(uploaded_file)

    if pdf_text is not None:
        # Store results in session state
        st.session_state["pdf_text"] = pdf_text
        st.session_state["pdf_tables"] = pdf_tables  # Save tables separately

        st.sidebar.success("PDF uploaded and text extracted!")
    else:
        st.markdown("[Example Financial Documents](https://drive.google.com/drive/folders/1jMu3S7S_Hc_RgK6_cvsCqIB8x3SSS-R6)")
        st.error("No text extracted from the uploaded PDF.")

# Step 1: Display Extracted Text
st.subheader("Extracted Text")
if st.session_state["pdf_text"]:
    st.text_area("Document Text", st.session_state["pdf_text"], height=400)
else:
    st.warning("No text extracted yet. Upload a PDF to start.")


# Step 2: Display Extracted Tables (Fixed Error)
st.subheader("Extracted Tables")
if st.session_state["pdf_tables"]:  # Check if tables exist
    for idx, table in enumerate(st.session_state["pdf_tables"]):
        st.write(f"Table {idx+1}")
        st.write(pd.DataFrame(table))  # Display tables as DataFrames
else:
    st.info("No tables extracted.")

# Retrieve variables from session state
nlp = st.session_state["nlp"]
summarizer = st.session_state["summarizer"]
pdf_text = st.session_state["pdf_text"]
pdf_tables = st.session_state["pdf_tables"]

# Ensure that the models are loaded
if nlp is None or summarizer is None:
    st.error("Models are not properly loaded. Please check model paths and installation.")
else:
    # Step 3: Named Entity Recognition (NER)
    st.subheader("NER Analysis")

    # Display full extracted text, not just first 1000 characters
    example_text = st.text_area(
        "Enter or paste text for analysis",
        height=400,
        value=st.session_state["pdf_text"] if st.session_state["pdf_text"] else ""
    )

    if st.button("Analyze"):
        # Ensure full extracted text is used for analysis
        text_for_analysis = st.session_state["pdf_text"].strip() if st.session_state["pdf_text"] else example_text.strip()
    
        if text_for_analysis:
            with st.spinner("Analyzing text..."):
                # Extract structured financial data using regex (Now using full text)
                extracted_data = {
                    key: (match.group(1) if match else "N/A")
                    for key, pattern in patterns.items()
                    if (match := re.search(pattern, text_for_analysis, re.IGNORECASE))
                }

                doc = nlp(text_for_analysis)
                financial_entities = [(ent.text, ent.label_) for ent in doc.ents if ent.label_ in ["MONEY", "PERCENT", "ORG", "DATE"]]
    
                # Store extracted data in a structured dictionary
                structured_data = {**extracted_data, "Named Entities Extracted": financial_entities}
    
                # Display results
                st.write("Entities Found:")
                st.write(pd.DataFrame(financial_entities, columns=["Entity", "Label"]))
    
                st.write("Structured Data Extracted:")
                st.write(pd.DataFrame([structured_data]))
    
        else:
            st.error("Please provide some text for analysis.")
    
    # Step 4: Summarization
    st.subheader("Summarization")
    st.write("Generate concise summaries of financial documents.")
    
    # Add customization options for summarization with chunk selection
    st.sidebar.header("Summarization Settings")
    max_chunks_to_process = st.sidebar.slider(
        "Max chunks to summarize", 
        min_value=1, 
        max_value=10, 
        value=3,
        help="Select fewer chunks for faster processing but less comprehensive summaries"
    )
    
    # Allow users to add custom keywords
    custom_keywords = st.sidebar.text_input(
        "Add custom keywords (comma separated)",
        value="",
        help="Add domain-specific keywords to improve chunk selection"
    )
    
    # Text summarization input
    input_text = st.text_area(
        "Enter text to summarize",
        height=200,
        value=st.session_state.get("pdf_text", "") if "pdf_text" in st.session_state else ""
    )
    
    # Add option to see chunk selection details
    show_chunk_details = st.sidebar.checkbox("Show chunk selection details", value=False)
    
    if st.button("Summarize"):
        text_to_summarize = input_text.strip()
        if text_to_summarize:
            try:
                # Display original text length
                input_length = len(text_to_summarize.split())
                st.write(f"Original text length: {input_length} words")
                
                # Process custom keywords if provided
                keywords = None
                if custom_keywords:
                    keywords = [kw.strip() for kw in custom_keywords.split(",") if kw.strip()]
                    st.write(f"Using custom keywords: {', '.join(keywords)}")
    
                # Split the text into manageable chunks
                chunks = split_text_into_chunks(text_to_summarize, tokenizer)
                st.write(f"Text has been split into {len(chunks)} chunks.")
                
                # NEW: Rank and select the best chunks instead of processing all of them
                selected_chunks = rank_and_select_chunks(
                    chunks, 
                    max_chunks=max_chunks_to_process,
                    keywords=keywords
                )
                
                st.write(f"Selected {len(selected_chunks)} highest-ranked chunks for summarization.")
                
                # Show chunk selection details if requested
                if show_chunk_details:
                    with st.expander("Chunk Selection Details"):
                        for i, chunk in enumerate(selected_chunks):
                            st.markdown(f"**Chunk {i+1}**")
                            st.write(f"Length: {len(chunk.split())} words")
                            st.text(chunk[:300] + "..." if len(chunk) > 300 else chunk)
                            st.write("---")
    
                # Summarize each selected chunk
                summaries = []
                with st.spinner(f"Summarizing {len(selected_chunks)} chunks..."):
                    for i, chunk in enumerate(selected_chunks):
                        st.write(f"Summarizing chunk {i+1}/{len(selected_chunks)}...")
                        # Adjust summary length parameters as needed
                        chunk_length = len(chunk.split())
                        max_summary_length = min(150, chunk_length // 2)
                        min_summary_length = max(50, max_summary_length // 2)
        
                        try:
                            summary_output = summarizer(
                                chunk,
                                max_length=max_summary_length,
                                min_length=min_summary_length,
                                do_sample=False,
                                truncation=True
                            )
                            chunk_summary = summary_output[0]['summary_text'].strip()
        
                            if not chunk_summary:
                                st.warning(f"The summary for chunk {i+1} is empty.")
                            else:
                                summaries.append(chunk_summary)
        
                        except Exception as e:
                            st.error(f"Summarization failed for chunk {i+1}: {e}")
                            st.text(traceback.format_exc())
                            continue
    
                if summaries:
                    # Combine summaries and remove duplicates
                    combined_summary = ' '.join(summaries)
                    final_summary = remove_duplicate_sentences(combined_summary)
                    
                    # Calculate compression ratio
                    summary_length = len(final_summary.split())
                    compression_ratio = (1 - summary_length / input_length) * 100
                    
                    st.subheader("Final Summary")
                    st.success(final_summary)
                    st.write(f"Summary length: {summary_length} words ({compression_ratio:.1f}% compression)")
                    
                    # Display summary statistics
                    st.subheader("Summary Statistics")
                    stats_col1, stats_col2 = st.columns(2)
                    with stats_col1:
                        st.metric("Original Length", f"{input_length} words")
                        st.metric("Total Chunks", str(len(chunks)))
                    with stats_col2:
                        st.metric("Summary Length", f"{summary_length} words")
                        st.metric("Chunks Processed", str(len(selected_chunks)))
                    
                else:
                    st.error("No summaries were generated.")
    
            except Exception as e:
                st.error("An error occurred during summarization.")
                st.text(traceback.format_exc())
        else:
            st.error("Please provide text to summarize.")
            
    # Add help information
    st.sidebar.markdown("---")
    with st.sidebar.expander("How Chunk Selection Works"):
        st.markdown("""
        The chunk selection algorithm ranks text chunks based on:
        
        1. **Keyword density** - Presence of financial terms
        2. **Length** - Longer chunks often contain more information
        3. **Numbers** - Financial documents with numbers are often important
        4. **Structure** - Lists and bullet points signal key information
        5. **Headers** - Section headers often introduce important content
        
        Adjust the settings above to customize the selection process.
        """)