import gradio as gr from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import torch import re # Load the pre-trained model and processor model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto", ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") # Function to extract text from the image def extract_text(image): messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "can u extract the text in hindi"} ] } ] # Process input image and text prompt text_prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( text=[text_prompt], images=[image], padding=True, return_tensors="pt" ) inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu") # Generate output text from the model output_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids) ] # Decode the generated text extracted_text = processor.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] # Extracted text return extracted_text # Function to highlight keywords in the text, even for right-to-left scripts like Hindi def highlight_keywords(extracted_text, keywords): highlighted_text = extracted_text if keywords: for keyword in keywords.split(","): keyword = keyword.strip() if keyword: # Ensure correct Unicode support for keywords (use re.UNICODE for non-ASCII) highlighted_text = re.sub( re.escape(keyword), # Use re.escape to handle special characters in keywords r'\g<0>', # Highlight the found keyword highlighted_text, flags=re.IGNORECASE | re.UNICODE # Ignore case, and handle Unicode characters ) return highlighted_text # First step: Extract text from the uploaded image def extract_text_step(image): extracted_text = extract_text(image) return extracted_text, extracted_text # Return extracted text and store it in state # Second step: Search and highlight keywords in the extracted text def highlight_keywords_step(extracted_text, keywords): highlighted_text = highlight_keywords(extracted_text, keywords) return highlighted_text # Gradio UI with gr.Blocks() as demo: # Step 1: Image Upload and Text Extraction with gr.Row(): image_input = gr.Image(type="pil", label="Upload Image") extract_button = gr.Button("Extract Text") extracted_text_output = gr.Textbox(label="Extracted Text") # Step 2: Keyword Input and Highlighting with gr.Row(): keyword_input = gr.Textbox(label="Enter keywords (comma-separated)", placeholder="Enter keywords after text extraction") search_button = gr.Button("Highlight Keywords") highlighted_text_output = gr.HTML(label="Highlighted Text with Matches") # Define interactions extract_button.click( fn=extract_text_step, # Call text extraction function inputs=image_input, outputs=[extracted_text_output, extracted_text_output], # Display text and store in state ) search_button.click( fn=highlight_keywords_step, # Call keyword highlighting function inputs=[extracted_text_output, keyword_input], # Use extracted text and keywords outputs=highlighted_text_output, # Display highlighted text ) # Launch the app demo.launch()