Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,223 +1,177 @@
|
|
1 |
-
# app.py β
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import os
|
4 |
import gc
|
|
|
|
|
|
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
try:
|
12 |
from peft import PeftConfig, PeftModel
|
13 |
-
from transformers import
|
|
|
|
|
|
|
|
|
14 |
IMPORTS_OK = True
|
15 |
-
except
|
16 |
IMPORTS_OK = False
|
17 |
print(f"Missing dependencies: {e}")
|
18 |
-
print("
|
19 |
|
20 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
-
HF_TOKEN = os.
|
22 |
-
|
23 |
-
#
|
24 |
-
ADAPTER_ID = "Reubencf/gemma3-goan-finetuned"
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
# Settings
|
36 |
-
USE_8BIT = False # Set to True if you have GPU and want to use 8-bit quantization
|
37 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
|
39 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
40 |
-
|
41 |
-
Gemma base model + LoRA adapter fine-tuned on a Goan Q&A dataset
|
42 |
-
Ask about Goa, Konkani culture, or general topics
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
# ββ Load model + tokenizer (correct LoRA loading) ββββββββββββββββββββββββββββββ
|
48 |
def load_model_and_tokenizer():
|
49 |
-
"""Load base model and apply LoRA adapter correctly"""
|
50 |
-
|
51 |
if not IMPORTS_OK:
|
52 |
-
raise ImportError("Required packages not installed")
|
53 |
-
|
54 |
-
print("[Init] Starting model load
|
55 |
-
print(f"[Config] Base model: {BASE_MODEL_ID}")
|
56 |
-
print(f"[Config] LoRA adapter: {ADAPTER_ID}")
|
57 |
print(f"[Config] Device: {DEVICE}")
|
58 |
-
|
59 |
-
#
|
60 |
gc.collect()
|
61 |
if torch.cuda.is_available():
|
62 |
torch.cuda.empty_cache()
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
tokenizer = None
|
67 |
-
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
peft_config = PeftConfig.from_pretrained(ADAPTER_ID, token=HF_TOKEN)
|
74 |
-
actual_base_model = peft_config.base_model_name_or_path
|
75 |
print(f"[Load] Adapter expects base model: {actual_base_model}")
|
76 |
-
|
77 |
-
|
78 |
-
if actual_base_model != BASE_MODEL_ID:
|
79 |
-
print(f"[Warning] BASE_MODEL_ID ({BASE_MODEL_ID}) doesn't match adapter's base ({actual_base_model})")
|
80 |
-
print(f"[Load] Using adapter's base model: {actual_base_model}")
|
81 |
-
except Exception as e:
|
82 |
-
print(f"[Warning] Cannot read adapter config: {e}")
|
83 |
-
print(f"[Load] Will try with configured base model: {BASE_MODEL_ID}")
|
84 |
-
actual_base_model = BASE_MODEL_ID
|
85 |
-
|
86 |
-
# Step 2: Load the BASE MODEL (not the adapter!)
|
87 |
-
print(f"[Load] Loading base model: {actual_base_model}")
|
88 |
-
|
89 |
-
# Quantization config for GPU
|
90 |
-
quantization_config = None
|
91 |
-
if USE_8BIT and torch.cuda.is_available():
|
92 |
-
print("[Load] Using 8-bit quantization")
|
93 |
-
quantization_config = BitsAndBytesConfig(
|
94 |
-
load_in_8bit=True,
|
95 |
-
bnb_8bit_compute_dtype=torch.float16
|
96 |
-
)
|
97 |
-
|
98 |
-
# Load base model
|
99 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
100 |
-
actual_base_model,
|
101 |
-
token=HF_TOKEN,
|
102 |
-
trust_remote_code=True,
|
103 |
-
quantization_config=quantization_config,
|
104 |
-
low_cpu_mem_usage=True,
|
105 |
-
torch_dtype=torch.float32 if DEVICE == "cpu" else torch.float16,
|
106 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
107 |
-
)
|
108 |
-
|
109 |
-
# Move to device if needed
|
110 |
-
if DEVICE == "cpu" and not torch.cuda.is_available():
|
111 |
-
base_model = base_model.to("cpu")
|
112 |
-
print("[Load] Model on CPU")
|
113 |
-
|
114 |
-
print("[Load] Base model loaded successfully")
|
115 |
-
|
116 |
-
# Step 3: Load tokenizer from the BASE MODEL
|
117 |
-
print(f"[Load] Loading tokenizer from base model...")
|
118 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
119 |
-
actual_base_model,
|
120 |
-
token=HF_TOKEN,
|
121 |
-
use_fast=True,
|
122 |
-
trust_remote_code=True,
|
123 |
-
)
|
124 |
-
|
125 |
-
if tokenizer.pad_token is None:
|
126 |
-
tokenizer.pad_token = tokenizer.eos_token
|
127 |
-
tokenizer.padding_side = "left"
|
128 |
-
|
129 |
-
# Step 4: Try to apply LoRA adapter
|
130 |
-
try:
|
131 |
-
print(f"[Load] Applying LoRA adapter: {ADAPTER_ID}")
|
132 |
-
model = PeftModel.from_pretrained(
|
133 |
-
base_model,
|
134 |
-
ADAPTER_ID,
|
135 |
-
token=HF_TOKEN,
|
136 |
-
trust_remote_code=True,
|
137 |
-
is_trainable=False, # Inference only
|
138 |
-
)
|
139 |
-
|
140 |
-
# Optional: Merge adapter with base model for faster inference
|
141 |
-
# This combines the weights permanently (uses more memory initially but faster inference)
|
142 |
-
merge = input("\nπ‘ Merge adapter for faster inference? (y/n, default=y): ").strip().lower()
|
143 |
-
if merge != 'n':
|
144 |
-
print("[Load] Merging adapter with base model...")
|
145 |
-
model = model.merge_and_unload()
|
146 |
-
print("[Load] Adapter merged successfully")
|
147 |
-
status = f"β
Using fine-tuned model (merged): {ADAPTER_ID}"
|
148 |
-
else:
|
149 |
-
print("[Load] Using adapter without merging")
|
150 |
-
status = f"β
Using fine-tuned model: {ADAPTER_ID}"
|
151 |
-
|
152 |
-
except FileNotFoundError as e:
|
153 |
-
print(f"[Error] Adapter files not found: {e}")
|
154 |
-
print("[Fallback] Using base model without fine-tuning")
|
155 |
-
model = base_model
|
156 |
-
status = f"β οΈ Adapter not found. Using base model only: {actual_base_model}"
|
157 |
-
|
158 |
-
except Exception as e:
|
159 |
-
print(f"[Error] Failed to load adapter: {e}")
|
160 |
-
print("[Fallback] Using base model without fine-tuning")
|
161 |
-
model = base_model
|
162 |
-
status = f"β οΈ Could not load adapter. Using base model only: {actual_base_model}"
|
163 |
-
|
164 |
-
# Step 5: Final setup
|
165 |
-
model.eval()
|
166 |
-
print(f"[Load] Model ready on {DEVICE}!")
|
167 |
-
|
168 |
-
# Memory cleanup
|
169 |
-
gc.collect()
|
170 |
-
if torch.cuda.is_available():
|
171 |
-
torch.cuda.empty_cache()
|
172 |
-
|
173 |
-
return model, tokenizer, status
|
174 |
-
|
175 |
except Exception as e:
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
else:
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
|
|
|
|
210 |
try:
|
211 |
model, tokenizer, STATUS_MSG = load_model_and_tokenizer()
|
212 |
MODEL_LOADED = True
|
213 |
-
DESCRIPTION =
|
214 |
except Exception as e:
|
215 |
print(f"[Fatal] Could not load model: {e}")
|
216 |
MODEL_LOADED = False
|
217 |
-
model
|
218 |
-
DESCRIPTION =
|
|
|
|
|
219 |
|
220 |
-
# ββ Generation function ββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½ββββββ
|
221 |
def generate_response(
|
222 |
message: str,
|
223 |
history: List[Tuple[str, str]],
|
@@ -226,58 +180,43 @@ def generate_response(
|
|
226 |
top_p: float = 0.95,
|
227 |
repetition_penalty: float = 1.1,
|
228 |
) -> str:
|
229 |
-
"""Generate response using the model"""
|
230 |
-
|
231 |
if not MODEL_LOADED:
|
232 |
-
return "β οΈ Model failed to load.
|
233 |
-
|
234 |
try:
|
235 |
-
# Build
|
236 |
conversation = []
|
237 |
if history:
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
conversation.append({"role": "assistant", "content": assistant_msg})
|
244 |
conversation.append({"role": "user", "content": message})
|
245 |
-
|
246 |
-
#
|
247 |
try:
|
248 |
-
|
249 |
conversation,
|
250 |
add_generation_prompt=True,
|
251 |
-
return_tensors="pt"
|
252 |
-
)
|
253 |
-
except Exception as e:
|
254 |
-
print(f"[Warning] Chat template failed: {e}, using fallback format")
|
255 |
-
# Fallback format
|
256 |
-
prompt_text = ""
|
257 |
-
for msg in conversation:
|
258 |
-
if msg["role"] == "user":
|
259 |
-
prompt_text += f"User: {msg['content']}\n"
|
260 |
-
else:
|
261 |
-
prompt_text += f"Assistant: {msg['content']}\n"
|
262 |
-
prompt_text += "Assistant: "
|
263 |
-
|
264 |
-
inputs = tokenizer(
|
265 |
-
prompt_text,
|
266 |
return_tensors="pt",
|
267 |
-
truncation=True,
|
268 |
-
max_length=512
|
269 |
)
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
277 |
with torch.no_grad():
|
278 |
-
|
279 |
-
input_ids=
|
280 |
-
max_new_tokens=min(int(max_new_tokens),
|
281 |
temperature=float(temperature),
|
282 |
top_p=float(top_p),
|
283 |
repetition_penalty=float(repetition_penalty),
|
@@ -286,106 +225,75 @@ def generate_response(
|
|
286 |
eos_token_id=tokenizer.eos_token_id,
|
287 |
use_cache=True,
|
288 |
)
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
print(f"[Generate] Output length: {len(generated_tokens)} tokens")
|
295 |
-
|
296 |
# Cleanup
|
297 |
-
del
|
298 |
gc.collect()
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
302 |
except Exception as e:
|
303 |
-
error_msg = f"β οΈ Error generating response: {str(e)}"
|
304 |
-
print(f"[Error] {error_msg}")
|
305 |
-
|
306 |
-
# Try to recover memory
|
307 |
gc.collect()
|
308 |
if torch.cuda.is_available():
|
309 |
torch.cuda.empty_cache()
|
310 |
-
|
311 |
-
return error_msg
|
312 |
|
313 |
-
# ββ
|
314 |
examples = [
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
]
|
321 |
|
322 |
-
#
|
|
|
|
|
|
|
|
|
|
|
323 |
if MODEL_LOADED:
|
324 |
demo = gr.ChatInterface(
|
325 |
fn=generate_response,
|
326 |
title=TITLE,
|
327 |
description=DESCRIPTION,
|
328 |
examples=examples,
|
329 |
-
retry_btn=None,
|
330 |
-
undo_btn=None,
|
331 |
additional_inputs=[
|
332 |
-
gr.Slider(
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
step=0.05,
|
337 |
-
label="Temperature (lower = more focused)"
|
338 |
-
),
|
339 |
-
gr.Slider(
|
340 |
-
minimum=32,
|
341 |
-
maximum=256,
|
342 |
-
value=128,
|
343 |
-
step=16,
|
344 |
-
label="Max new tokens"
|
345 |
-
),
|
346 |
-
gr.Slider(
|
347 |
-
minimum=0.1,
|
348 |
-
maximum=1.0,
|
349 |
-
value=0.95,
|
350 |
-
step=0.05,
|
351 |
-
label="Top-p (nucleus sampling)"
|
352 |
-
),
|
353 |
-
gr.Slider(
|
354 |
-
minimum=1.0,
|
355 |
-
maximum=2.0,
|
356 |
-
value=1.1,
|
357 |
-
step=0.05,
|
358 |
-
label="Repetition penalty"
|
359 |
-
),
|
360 |
],
|
361 |
-
theme=
|
362 |
)
|
363 |
else:
|
364 |
demo = gr.Interface(
|
365 |
-
fn=lambda x: "Model failed to load. Check
|
366 |
inputs=gr.Textbox(label="Message"),
|
367 |
outputs=gr.Textbox(label="Response"),
|
368 |
title=TITLE,
|
369 |
description=DESCRIPTION,
|
|
|
370 |
)
|
371 |
|
372 |
-
# Queue
|
373 |
try:
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
try:
|
378 |
-
# Fall back to older syntax (3.x)
|
379 |
-
demo.queue(concurrency_count=1, max_size=10)
|
380 |
-
except:
|
381 |
-
# If both fail, try without parameters
|
382 |
-
demo.queue()
|
383 |
|
384 |
if __name__ == "__main__":
|
385 |
-
print("\n" + "="*
|
386 |
-
print(f"π Starting Gradio app on {DEVICE}
|
387 |
-
print(f"π Base model: {
|
388 |
print(f"π§ LoRA adapter: {ADAPTER_ID}")
|
389 |
-
print("
|
390 |
-
|
|
|
391 |
demo.launch()
|
|
|
1 |
+
# app.py β Hugging Face Space ready (LoRA adapter, Gradio compat)
|
2 |
+
# ---------------------------------------------------------------
|
3 |
+
# What changed vs your script
|
4 |
+
# - Removed ChatInterface args that broke on old Gradio (retry_btn, undo_btn)
|
5 |
+
# - No interactive input() for merging (Spaces are non-interactive). Use MERGE_LORA env var.
|
6 |
+
# - Secrets: read HF token from env (Settings β Secrets β HF_TOKEN), never hardcode.
|
7 |
+
# - Token passing works across transformers/peft versions (token/use_auth_token fallback).
|
8 |
+
# - Optional 8-bit via USE_8BIT=1 (GPU only). Safe CPU defaults.
|
9 |
+
# - Robust theme/queue/launch for mixed Gradio versions.
|
10 |
|
11 |
import os
|
12 |
import gc
|
13 |
+
import warnings
|
14 |
+
from typing import List, Tuple
|
15 |
+
|
16 |
import torch
|
17 |
import gradio as gr
|
18 |
+
|
19 |
+
warnings.filterwarnings("ignore")
|
20 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
21 |
|
22 |
try:
|
23 |
from peft import PeftConfig, PeftModel
|
24 |
+
from transformers import (
|
25 |
+
AutoTokenizer,
|
26 |
+
AutoModelForCausalLM,
|
27 |
+
BitsAndBytesConfig,
|
28 |
+
)
|
29 |
IMPORTS_OK = True
|
30 |
+
except Exception as e:
|
31 |
IMPORTS_OK = False
|
32 |
print(f"Missing dependencies: {e}")
|
33 |
+
print("Install: pip install --upgrade 'transformers>=4.41' peft accelerate gradio torch bitsandbytes")
|
34 |
|
35 |
# ββ Configuration ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
36 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # set in Space Settings β Secrets β HF_TOKEN
|
37 |
+
|
38 |
+
# LoRA adapter repo (must be compatible with BASE_MODEL_ID)
|
39 |
+
ADAPTER_ID = os.getenv("ADAPTER_ID", "Reubencf/gemma3-goan-finetuned")
|
40 |
+
|
41 |
+
# Base model used during fine-tuning (should match adapter's base)
|
42 |
+
BASE_MODEL_ID_DEFAULT = os.getenv("BASE_MODEL_ID", "google/gemma-3-4b-it")
|
43 |
+
|
44 |
+
# Quantization toggle (GPU only): set USE_8BIT=1 in Space variables
|
45 |
+
USE_8BIT = os.getenv("USE_8BIT", "0").lower() in {"1", "true", "yes", "y"}
|
46 |
+
|
47 |
+
# Merge LoRA into the base for faster inference: MERGE_LORA=1/0
|
48 |
+
MERGE_LORA = os.getenv("MERGE_LORA", "1").lower() in {"1", "true", "yes", "y"}
|
49 |
+
|
|
|
|
|
50 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
|
52 |
TITLE = "π΄ Gemma Goan Q&A Bot"
|
53 |
+
DESCRIPTION_TMPL = (
|
54 |
+
"Gemma base model + LoRA adapter fine-tuned on a Goan Q&A dataset.\n"
|
55 |
+
"Ask about Goa, Konkani culture, or general topics!\n\n"
|
56 |
+
"**Status**: {}"
|
57 |
+
)
|
58 |
|
59 |
+
# ββ Helpers βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
60 |
+
|
61 |
+
def call_with_token(fn, *args, **kwargs):
|
62 |
+
"""Call HF/Transformers/PEFT functions with token OR use_auth_token for
|
63 |
+
broad version compatibility."""
|
64 |
+
if HF_TOKEN:
|
65 |
+
try:
|
66 |
+
return fn(*args, token=HF_TOKEN, **kwargs)
|
67 |
+
except TypeError:
|
68 |
+
return fn(*args, use_auth_token=HF_TOKEN, **kwargs)
|
69 |
+
return fn(*args, **kwargs)
|
70 |
+
|
71 |
+
# ββ Load model + tokenizer βββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
72 |
|
|
|
73 |
def load_model_and_tokenizer():
|
|
|
|
|
74 |
if not IMPORTS_OK:
|
75 |
+
raise ImportError("Required packages not installed.")
|
76 |
+
|
77 |
+
print("[Init] Starting model loadβ¦")
|
|
|
|
|
78 |
print(f"[Config] Device: {DEVICE}")
|
79 |
+
|
80 |
+
# GC + VRAM cleanup
|
81 |
gc.collect()
|
82 |
if torch.cuda.is_available():
|
83 |
torch.cuda.empty_cache()
|
84 |
+
|
85 |
+
# Step 1: Confirm base model from the adapter's config if possible
|
86 |
+
actual_base_model = BASE_MODEL_ID_DEFAULT
|
|
|
|
|
87 |
try:
|
88 |
+
print(f"[Load] Reading adapter config: {ADAPTER_ID}")
|
89 |
+
peft_cfg = call_with_token(PeftConfig.from_pretrained, ADAPTER_ID)
|
90 |
+
if getattr(peft_cfg, "base_model_name_or_path", None):
|
91 |
+
actual_base_model = peft_cfg.base_model_name_or_path
|
|
|
|
|
92 |
print(f"[Load] Adapter expects base model: {actual_base_model}")
|
93 |
+
else:
|
94 |
+
print("[Warn] Adapter did not expose base_model_name_or_path; using configured base.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
+
print(f"[Warn] Could not read adapter config ({e}); using configured base: {actual_base_model}")
|
97 |
+
|
98 |
+
# Step 2: Load base model (optionally quantized on GPU)
|
99 |
+
print(f"[Load] Loading base model: {actual_base_model}")
|
100 |
+
quant_cfg = None
|
101 |
+
if USE_8BIT and torch.cuda.is_available():
|
102 |
+
print("[Load] Enabling 8-bit quantization (bitsandbytes)")
|
103 |
+
quant_cfg = BitsAndBytesConfig(load_in_8bit=True, bnb_8bit_compute_dtype=torch.float16)
|
104 |
+
|
105 |
+
base_model = call_with_token(
|
106 |
+
AutoModelForCausalLM.from_pretrained,
|
107 |
+
actual_base_model,
|
108 |
+
trust_remote_code=True,
|
109 |
+
quantization_config=quant_cfg,
|
110 |
+
low_cpu_mem_usage=True,
|
111 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
112 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
113 |
+
)
|
114 |
+
|
115 |
+
if DEVICE == "cpu" and not torch.cuda.is_available():
|
116 |
+
base_model = base_model.to("cpu")
|
117 |
+
print("[Load] Model on CPU")
|
118 |
+
|
119 |
+
print("[Load] Base model loaded β")
|
120 |
+
|
121 |
+
# Step 3: Tokenizer
|
122 |
+
print("[Load] Loading tokenizerβ¦")
|
123 |
+
tokenizer = call_with_token(
|
124 |
+
AutoTokenizer.from_pretrained,
|
125 |
+
actual_base_model,
|
126 |
+
use_fast=True,
|
127 |
+
trust_remote_code=True,
|
128 |
+
)
|
129 |
+
if tokenizer.pad_token is None:
|
130 |
+
tokenizer.pad_token = tokenizer.eos_token
|
131 |
+
tokenizer.padding_side = "left"
|
132 |
+
|
133 |
+
# Step 4: Apply LoRA adapter
|
134 |
+
status = ""
|
135 |
+
model = base_model
|
136 |
+
try:
|
137 |
+
print(f"[Load] Applying LoRA adapter: {ADAPTER_ID}")
|
138 |
+
model = call_with_token(PeftModel.from_pretrained, base_model, ADAPTER_ID)
|
139 |
+
|
140 |
+
if MERGE_LORA:
|
141 |
+
print("[Load] Merging adapter into base (merge_and_unload)β¦")
|
142 |
+
model = model.merge_and_unload()
|
143 |
+
status = f"β
Using fine-tuned model (merged): {ADAPTER_ID}"
|
144 |
else:
|
145 |
+
status = f"β
Using fine-tuned model via adapter: {ADAPTER_ID}"
|
146 |
+
except FileNotFoundError as e:
|
147 |
+
print(f"[Error] Adapter files not found: {e}")
|
148 |
+
status = f"β οΈ Adapter not found. Using base only: {actual_base_model}"
|
149 |
+
except Exception as e:
|
150 |
+
print(f"[Error] Failed to load adapter: {e}")
|
151 |
+
status = f"β οΈ Could not load adapter. Using base only: {actual_base_model}"
|
152 |
+
|
153 |
+
model.eval()
|
154 |
+
print(f"[Load] Model ready on {DEVICE} β")
|
155 |
+
|
156 |
+
gc.collect()
|
157 |
+
if torch.cuda.is_available():
|
158 |
+
torch.cuda.empty_cache()
|
159 |
|
160 |
+
return model, tokenizer, status
|
161 |
+
|
162 |
+
# Global load at import time (Space-friendly)
|
163 |
try:
|
164 |
model, tokenizer, STATUS_MSG = load_model_and_tokenizer()
|
165 |
MODEL_LOADED = True
|
166 |
+
DESCRIPTION = DESCRIPTION_TMPL.format(STATUS_MSG)
|
167 |
except Exception as e:
|
168 |
print(f"[Fatal] Could not load model: {e}")
|
169 |
MODEL_LOADED = False
|
170 |
+
model = tokenizer = None
|
171 |
+
DESCRIPTION = DESCRIPTION_TMPL.format(f"β Model failed to load: {str(e)[:140]}")
|
172 |
+
|
173 |
+
# ββ Generation ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
174 |
|
|
|
175 |
def generate_response(
|
176 |
message: str,
|
177 |
history: List[Tuple[str, str]],
|
|
|
180 |
top_p: float = 0.95,
|
181 |
repetition_penalty: float = 1.1,
|
182 |
) -> str:
|
|
|
|
|
183 |
if not MODEL_LOADED:
|
184 |
+
return "β οΈ Model failed to load. Check Space logs."
|
185 |
+
|
186 |
try:
|
187 |
+
# Build short chat history
|
188 |
conversation = []
|
189 |
if history:
|
190 |
+
for u, a in history[-3:]:
|
191 |
+
if u:
|
192 |
+
conversation.append({"role": "user", "content": u})
|
193 |
+
if a:
|
194 |
+
conversation.append({"role": "assistant", "content": a})
|
|
|
195 |
conversation.append({"role": "user", "content": message})
|
196 |
+
|
197 |
+
# Try the tokenizer's chat template first
|
198 |
try:
|
199 |
+
input_ids = tokenizer.apply_chat_template(
|
200 |
conversation,
|
201 |
add_generation_prompt=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
return_tensors="pt",
|
|
|
|
|
203 |
)
|
204 |
+
except Exception as e:
|
205 |
+
print(f"[Warn] chat_template failed: {e}; using manual format")
|
206 |
+
prompt_text = "".join(
|
207 |
+
[
|
208 |
+
("User: " + m["content"] + "\n") if m["role"] == "user" else ("Assistant: " + m["content"] + "\n")
|
209 |
+
for m in conversation
|
210 |
+
]
|
211 |
+
) + "Assistant: "
|
212 |
+
input_ids = tokenizer(prompt_text, return_tensors="pt", truncation=True, max_length=1024).input_ids
|
213 |
+
|
214 |
+
input_ids = input_ids.to(model.device if hasattr(model, "device") else DEVICE)
|
215 |
+
|
216 |
with torch.no_grad():
|
217 |
+
out = model.generate(
|
218 |
+
input_ids=input_ids,
|
219 |
+
max_new_tokens=max(1, min(int(max_new_tokens), 512)),
|
220 |
temperature=float(temperature),
|
221 |
top_p=float(top_p),
|
222 |
repetition_penalty=float(repetition_penalty),
|
|
|
225 |
eos_token_id=tokenizer.eos_token_id,
|
226 |
use_cache=True,
|
227 |
)
|
228 |
+
|
229 |
+
gen = out[0][input_ids.shape[-1]:]
|
230 |
+
text = tokenizer.decode(gen, skip_special_tokens=True).strip()
|
231 |
+
|
|
|
|
|
|
|
232 |
# Cleanup
|
233 |
+
del out, input_ids, gen
|
234 |
gc.collect()
|
235 |
+
if torch.cuda.is_available():
|
236 |
+
torch.cuda.empty_cache()
|
237 |
+
|
238 |
+
return text or "(no output)"
|
239 |
+
|
240 |
except Exception as e:
|
|
|
|
|
|
|
|
|
241 |
gc.collect()
|
242 |
if torch.cuda.is_available():
|
243 |
torch.cuda.empty_cache()
|
244 |
+
return f"β οΈ Error generating response: {e}"
|
|
|
245 |
|
246 |
+
# ββ UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
247 |
examples = [
|
248 |
+
"What is the capital of Goa?",
|
249 |
+
"Tell me about the Konkani language.",
|
250 |
+
"What are famous beaches in Goa?",
|
251 |
+
"Describe Goan fish curry.",
|
252 |
+
"What is the history of Old Goa?",
|
253 |
]
|
254 |
|
255 |
+
# Best-effort theme across versions
|
256 |
+
try:
|
257 |
+
THEME = gr.themes.Soft()
|
258 |
+
except Exception:
|
259 |
+
THEME = None
|
260 |
+
|
261 |
if MODEL_LOADED:
|
262 |
demo = gr.ChatInterface(
|
263 |
fn=generate_response,
|
264 |
title=TITLE,
|
265 |
description=DESCRIPTION,
|
266 |
examples=examples,
|
|
|
|
|
267 |
additional_inputs=[
|
268 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"),
|
269 |
+
gr.Slider(minimum=32, maximum=512, value=256, step=16, label="Max new tokens"),
|
270 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
271 |
+
gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.05, label="Repetition penalty"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
],
|
273 |
+
theme=THEME,
|
274 |
)
|
275 |
else:
|
276 |
demo = gr.Interface(
|
277 |
+
fn=lambda x: "Model failed to load. Check Space logs.",
|
278 |
inputs=gr.Textbox(label="Message"),
|
279 |
outputs=gr.Textbox(label="Response"),
|
280 |
title=TITLE,
|
281 |
description=DESCRIPTION,
|
282 |
+
theme=THEME,
|
283 |
)
|
284 |
|
285 |
+
# Queue β keep params minimal for cross-version compat
|
286 |
try:
|
287 |
+
demo.queue()
|
288 |
+
except Exception:
|
289 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
+
print("\n" + "=" * 60)
|
293 |
+
print(f"π Starting Gradio app on {DEVICE} β¦")
|
294 |
+
print(f"π Base model: {BASE_MODEL_ID_DEFAULT}")
|
295 |
print(f"π§ LoRA adapter: {ADAPTER_ID}")
|
296 |
+
print(f"π§© Merge LoRA: {MERGE_LORA}")
|
297 |
+
print("=" * 60 + "\n")
|
298 |
+
# On Spaces, just calling launch() is fine.
|
299 |
demo.launch()
|