Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import pandas as pd | |
| import yfinance as yf | |
| from datetime import timedelta,datetime | |
| import pytz | |
| import matplotlib.pyplot as plt | |
| from PIL import Image | |
| import numpy as np | |
| def dateoffset(input_date_str): | |
| input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d") | |
| new_date_dt = input_date_dt - timedelta(days=1) | |
| new_date_str = new_date_dt.strftime("%Y-%m-%d") | |
| return new_date_str | |
| def setdates(startdate, enddate): | |
| while startdate not in nifty50["nifty50"].data.index: | |
| startdate = dateoffset(startdate) | |
| while enddate not in nifty50["nifty50"].data.index: | |
| enddate = dateoffset(enddate) | |
| return startdate, enddate | |
| def organisedata(startdate, enddate): | |
| startdate, enddate = setdates(startdate, enddate) | |
| symbols = list(nifty_stocks.keys()) | |
| common_index = nifty50["nifty50"].data.loc[startdate:enddate].index | |
| data_frame = pd.DataFrame(index=symbols, columns=common_index) | |
| for symbol, stock_object in nifty_stocks.items(): | |
| stock_data = stock_object.data.loc[startdate:enddate, 'Close'] | |
| data_frame.loc[symbol] = stock_data.reindex(common_index).values | |
| return data_frame | |
| def previoustimeframedata(n, startdate): | |
| startdate_dt = pd.to_datetime(startdate) | |
| ndaysagodate = startdate_dt - timedelta(days=int(n)) | |
| ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d") | |
| startdate_str = startdate_dt.strftime("%Y-%m-%d") | |
| return organisedata(ndaysagodate_str, startdate_str) | |
| def portfoliooperations(equity,startdate,ndaywindow,portfolio): | |
| startdate_dt = pd.to_datetime(startdate) | |
| windowenddate = startdate_dt + timedelta(days=int(ndaywindow)) | |
| windowenddate_str = windowenddate.strftime("%Y-%m-%d") | |
| startdate,windowenddate = setdates(startdate,windowenddate_str) | |
| window_data = organisedata(startdate,windowenddate) | |
| differences = window_data.iloc[:, -1] - window_data.iloc[:, 0] | |
| next_portfolio = differences[differences > 0].index.tolist() | |
| portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum() | |
| multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0 | |
| portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value']) | |
| for date in window_data.columns: | |
| portfolio_sum = window_data.loc[portfolio, date].sum() | |
| portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier | |
| return next_portfolio,portfolio_value | |
| def mainfunction (equity,startdate,enddate,ndaywindow): | |
| pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here | |
| differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0] | |
| portfolio = differences[differences > 0].index.tolist() # No Errors untill here | |
| portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio) | |
| enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata')) | |
| while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)): | |
| portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio) | |
| portfolio_value = pd.concat([portfolio_value, new_portfolio_value]) | |
| startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d") | |
| equity = portfolio_value.iloc[-1, 0] | |
| return portfolio_value | |
| def calculate_cagr(series): | |
| total_return = (series.iloc[-1] / series.iloc[0]) - 1 | |
| num_years = len(series) / 252 | |
| cagr = (1 + total_return) ** (1 / num_years) - 1 | |
| return cagr * 100 | |
| def calculate_volatility(series): | |
| return series.pct_change().std() * np.sqrt(252) * 100 | |
| def calculate_sharpe_ratio(series, risk_free_rate=0): | |
| cagr = calculate_cagr(series) | |
| volatility = calculate_volatility(series) | |
| sharpe_ratio = (cagr - risk_free_rate) / volatility | |
| return sharpe_ratio | |
| def final_function(equity,startdate,enddate,ndaywindow): | |
| equity = int(equity) | |
| ndaywindow = int(ndaywindow) | |
| portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow) | |
| nifty_data = nifty50["nifty50"].data | |
| subset_data = nifty_data[startdate:enddate] | |
| initial_nifty = subset_data['Close'][0] | |
| nifty_dataseries = (equity/initial_nifty)*subset_data['Close'] | |
| plt.figure(figsize=(10, 6)) | |
| plt.plot(portfolio_value['value'], label='Strategy') | |
| plt.plot(nifty_dataseries, label='Nifty50 as Benchmark') | |
| plt.title('Benchmark vs Strategy') | |
| plt.xlabel('Date') | |
| plt.ylabel('Close Price') | |
| plt.legend() | |
| image_path = "output_plot.png" | |
| plt.savefig(image_path) | |
| plt.close() | |
| image = Image.open(image_path) | |
| strategy_cagr = calculate_cagr(portfolio_value['value']) | |
| strategy_volatility = calculate_volatility(portfolio_value['value']) | |
| strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value']) | |
| benchmark_cagr = calculate_cagr(nifty_dataseries) | |
| benchmark_volatility = calculate_volatility(nifty_dataseries) | |
| benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries) | |
| return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio | |