kodetr commited on
Commit
8225915
·
verified ·
1 Parent(s): aa18d80
Files changed (1) hide show
  1. app.py +5 -71
app.py CHANGED
@@ -1,69 +1,3 @@
1
- # import gradio as gr
2
- # from huggingface_hub import InferenceClient
3
-
4
- # """
5
- # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- # """
7
- # client = InferenceClient("kodetr/stunting-qa-v3")
8
-
9
-
10
- # def respond(
11
- # message,
12
- # history: list[tuple[str, str]],
13
- # system_message,
14
- # max_tokens,
15
- # temperature,
16
- # top_p,
17
- # ):
18
- # messages = [{"role": "system", "content": system_message}]
19
-
20
- # for val in history:
21
- # if val[0]:
22
- # messages.append({"role": "user", "content": val[0]})
23
- # if val[1]:
24
- # messages.append({"role": "assistant", "content": val[1]})
25
-
26
- # messages.append({"role": "user", "content": message})
27
-
28
- # response = ""
29
-
30
- # for message in client.chat_completion(
31
- # messages,
32
- # max_tokens=max_tokens,
33
- # stream=True,
34
- # temperature=temperature,
35
- # top_p=top_p,
36
- # ):
37
- # token = message.choices[0].delta.content
38
-
39
- # response += token
40
- # yield response
41
-
42
-
43
- # """
44
- # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- # """
46
- # demo = gr.ChatInterface(
47
- # respond,
48
- # additional_inputs=[
49
- # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- # gr.Slider(
53
- # minimum=0.1,
54
- # maximum=1.0,
55
- # value=0.95,
56
- # step=0.05,
57
- # label="Top-p (nucleus sampling)",
58
- # ),
59
- # ],
60
- # )
61
-
62
-
63
- # if __name__ == "__main__":
64
- # demo.launch()
65
-
66
-
67
  import torch
68
  from PIL import Image
69
  import gradio as gr
@@ -111,7 +45,7 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
111
  def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
112
  print(f'message is - {message}')
113
  print(f'history is - {history}')
114
- conversation = [{"role": "system", "content": 'Bạn một trợ hữu ích tên là Vy Linh. Hãy trả lời câu hỏi của người dùng bằng Tiếng Việt.'}]
115
  for prompt, answer in history:
116
  conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
117
  conversation.append({"role": "user", "content": message})
@@ -199,10 +133,10 @@ with gr.Blocks(css=CSS) as demo:
199
  ),
200
  ],
201
  examples=[
202
- ["Viết một lá thư chúc mừng sinh nhật gửi bạn Thục Linh."],
203
- ["Trường Sa Hoàng Sa là của nước nào?"],
204
- ["Giới thiệu về tỉ phú Elon Musk"],
205
- ["Viết code một trang nhân đơn giản bằng html."],
206
  ],
207
  cache_examples=False,
208
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  from PIL import Image
3
  import gradio as gr
 
45
  def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
46
  print(f'message is - {message}')
47
  print(f'history is - {history}')
48
+ conversation = [{"role": "system", "content": 'Di bawah ini adalah instruksi yang menjelaskan suatu tugas. Tulis respons yang menyelesaikan permintaan dengan tepat.'}]
49
  for prompt, answer in history:
50
  conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
51
  conversation.append({"role": "user", "content": message})
 
133
  ),
134
  ],
135
  examples=[
136
+ ["Stunting"],
137
+ ["Apa saja tanda-tanda anak mengalami stunting?"],
138
+ ["Apa saja makanan yang bisa mencegah stunting?"],
139
+ ["Bagaimana malnutrisi dapat mempengaruhi perkembangan otak anak?"],
140
  ],
141
  cache_examples=False,
142
  )