Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,60 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import difflib
|
| 3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Assuming you have 'lpi_df' and 'similarity' defined before this point
|
| 6 |
|
| 7 |
lpi_df = pd.read_csv('Learning_Pathway_Index.csv')
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
st.title('Course Recommendation App')
|
| 11 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import difflib
|
| 3 |
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
import warnings
|
| 9 |
+
warnings.filterwarnings("ignore")
|
| 10 |
+
%matplotlib inline
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# for text data preprocessing
|
| 14 |
+
import re
|
| 15 |
+
from nltk.corpus import stopwords
|
| 16 |
+
from nltk.stem.porter import PorterStemmer
|
| 17 |
+
from wordcloud import WordCloud
|
| 18 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 19 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 20 |
|
| 21 |
# Assuming you have 'lpi_df' and 'similarity' defined before this point
|
| 22 |
|
| 23 |
lpi_df = pd.read_csv('Learning_Pathway_Index.csv')
|
| 24 |
|
| 25 |
+
lpi_df['combined_features'] = lpi_df['Course_Learning_Material']+' '+lpi_df['Source']+' '+lpi_df['Course_Level']+' '+lpi_df['Type']+' '+lpi_df['Module']+' '+lpi_df['Difficulty_Level']+' '+lpi_df['Keywords_Tags_Skills_Interests_Categories']
|
| 26 |
+
|
| 27 |
+
combined_features = lpi_df['combined_features']
|
| 28 |
+
|
| 29 |
+
porter_stemmer = PorterStemmer()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def stemming(content):
|
| 33 |
+
stemmed_content = re.sub('[^a-zA-Z]',' ',content)
|
| 34 |
+
stemmed_content = stemmed_content.lower()
|
| 35 |
+
stemmed_content = stemmed_content.split()
|
| 36 |
+
stemmed_content = [porter_stemmer.stem(word) for word in stemmed_content if not word in stopwords.words('english')]
|
| 37 |
+
stemmed_content = ' '.join(stemmed_content)
|
| 38 |
+
return stemmed_content
|
| 39 |
+
|
| 40 |
+
combined_features = combined_features.apply(stemming)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
vectorizer = TfidfVectorizer()
|
| 44 |
+
|
| 45 |
+
vectorizer.fit(combined_features)
|
| 46 |
+
|
| 47 |
+
combined_features = vectorizer.transform(combined_features)
|
| 48 |
+
|
| 49 |
+
similarity = cosine_similarity(combined_features)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
|
| 59 |
st.title('Course Recommendation App')
|
| 60 |
|