Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load summarization pipeline | |
summarizer = pipeline(task="summarization", model="facebook/bart-large-cnn") | |
def summarize_text(text: str, min_len: int, max_len:int) -> str: | |
summary = summarizer(text, | |
min_length=min_len, | |
max_length=max_len) | |
return summary[0]['summary_text'] | |
# Streamlit app | |
st.title("Text Summarizer") | |
# Input text | |
text_input = st.text_area("Enter the text you want to summarize:") | |
# Slider for minimum summary length | |
min_length = st.slider("Minimum summary length:", 10, 100, 30) | |
# Slider for maximum summary length | |
max_length = st.slider("Maximum summary length:", 50, 200, 100) | |
# Button to summarize text | |
summarize_btn = st.button("Summarize") | |
if summarize_btn and text_input: | |
summary = summarize_text(text_input, min_length, max_length) | |
st.subheader("Summary:") | |
st.write(summary) | |
if summarize_btn and not text_input: | |
st.write("Please enter text to summarize.") | |