klucas12345
commited on
Commit
·
9340c91
1
Parent(s):
c26f9ae
v1
Browse files
t1.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from transformers import ViTFeatureExtractor, ViTModel, ViTForImageClassification, TrainingArguments, Trainer, \
|
5 |
+
default_data_collator, EarlyStoppingCallback
|
6 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
7 |
+
from datasets import load_dataset, load_metric, Features, ClassLabel, Array3D
|
8 |
+
|
9 |
+
train_ds, test_ds = load_dataset('cifar10', split=['train[:5000]', 'test[:2000]'])
|
10 |
+
splits = train_ds.train_test_split(test_size=0.1)
|
11 |
+
train_ds = splits['train']
|
12 |
+
val_ds = splits['test']
|
13 |
+
|
14 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
15 |
+
data_collator = default_data_collator
|
16 |
+
|
17 |
+
|
18 |
+
def preprocess_images(examples):
|
19 |
+
images = examples['img']
|
20 |
+
images = [np.array(image, dtype=np.uint8) for image in images]
|
21 |
+
images = [np.moveaxis(image, source=-1, destination=0) for image in images]
|
22 |
+
inputs = feature_extractor(images=images)
|
23 |
+
examples['pixel_values'] = inputs['pixel_values']
|
24 |
+
|
25 |
+
return examples
|
26 |
+
|
27 |
+
|
28 |
+
features = Features({
|
29 |
+
'label': ClassLabel(
|
30 |
+
names=['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']),
|
31 |
+
'img': Array3D(dtype="int64", shape=(3, 32, 32)),
|
32 |
+
'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)),
|
33 |
+
})
|
34 |
+
|
35 |
+
preprocessed_train_ds = train_ds.map(preprocess_images, batched=True, features=features)
|
36 |
+
preprocessed_val_ds = val_ds.map(preprocess_images, batched=True, features=features)
|
37 |
+
preprocessed_test_ds = test_ds.map(preprocess_images, batched=True, features=features)
|
38 |
+
|
39 |
+
|
40 |
+
class ViTForImageClassification2(nn.Module):
|
41 |
+
def __init__(self, num_labels=10):
|
42 |
+
super(ViTForImageClassification2, self).__init__()
|
43 |
+
self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
44 |
+
self.classifier = nn.Linear(self.vit.config.hidden_size, num_labels)
|
45 |
+
self.num_labels = num_labels
|
46 |
+
|
47 |
+
def forward(self, pixel_values, labels):
|
48 |
+
outputs = self.vit(pixel_values=pixel_values)
|
49 |
+
logits = self.classifier(outputs.last_hidden_state[:, 0])
|
50 |
+
|
51 |
+
loss = None
|
52 |
+
if labels is not None:
|
53 |
+
loss_fct = nn.CrossEntropyLoss()
|
54 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
55 |
+
|
56 |
+
return SequenceClassifierOutput(
|
57 |
+
loss=loss,
|
58 |
+
logits=logits,
|
59 |
+
hidden_states=outputs.hidden_states,
|
60 |
+
attentions=outputs.attentions,
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
args = TrainingArguments(
|
65 |
+
f"test-cifar-10",
|
66 |
+
evaluation_strategy="epoch",
|
67 |
+
learning_rate=2e-5,
|
68 |
+
per_device_train_batch_size=10,
|
69 |
+
per_device_eval_batch_size=4,
|
70 |
+
num_train_epochs=3,
|
71 |
+
weight_decay=0.01,
|
72 |
+
load_best_model_at_end=True,
|
73 |
+
metric_for_best_model="accuracy",
|
74 |
+
logging_dir='logs',
|
75 |
+
)
|
76 |
+
|
77 |
+
# model = ViTForImageClassification()
|
78 |
+
model = ViTForImageClassification2()
|
79 |
+
|
80 |
+
|
81 |
+
def compute_metrics(eval_pred):
|
82 |
+
predictions, labels = eval_pred
|
83 |
+
predictions = np.argmax(predictions, axis=1)
|
84 |
+
return load_metric("accuracy").compute(predictions=predictions, references=labels)
|
85 |
+
|
86 |
+
|
87 |
+
trainer = Trainer(
|
88 |
+
model,
|
89 |
+
args,
|
90 |
+
train_dataset=preprocessed_train_ds,
|
91 |
+
eval_dataset=preprocessed_val_ds,
|
92 |
+
data_collator=data_collator,
|
93 |
+
compute_metrics=compute_metrics,
|
94 |
+
)
|
95 |
+
|
96 |
+
trainer.train()
|
97 |
+
|
98 |
+
outputs = trainer.predict(preprocessed_test_ds)
|