Spaces:
				
			
			
	
			
			
		Starting
		
	
	
	
			
			
	
	
	
	
		
		
		Starting
		
	Update inference to latest
Browse files- __init__.py +7 -2
 - gradio_app.py +1 -1
 - run.py +12 -2
 - spar3d/models/network.py +5 -2
 - spar3d/system.py +242 -47
 - spar3d/utils.py +1 -1
 
    	
        __init__.py
    CHANGED
    
    | 
         @@ -29,14 +29,19 @@ class SPAR3DLoader: 
     | 
|
| 29 | 
         | 
| 30 | 
         
             
                @classmethod
         
     | 
| 31 | 
         
             
                def INPUT_TYPES(cls):
         
     | 
| 32 | 
         
            -
                    return { 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 33 | 
         | 
| 34 | 
         
            -
                def load(self):
         
     | 
| 35 | 
         
             
                    device = comfy.model_management.get_torch_device()
         
     | 
| 36 | 
         
             
                    model = SPAR3D.from_pretrained(
         
     | 
| 37 | 
         
             
                        SPAR3D_MODEL_NAME,
         
     | 
| 38 | 
         
             
                        config_name="config.yaml",
         
     | 
| 39 | 
         
             
                        weight_name="model.safetensors",
         
     | 
| 
         | 
|
| 40 | 
         
             
                    )
         
     | 
| 41 | 
         
             
                    model.to(device)
         
     | 
| 42 | 
         
             
                    model.eval()
         
     | 
| 
         | 
|
| 29 | 
         | 
| 30 | 
         
             
                @classmethod
         
     | 
| 31 | 
         
             
                def INPUT_TYPES(cls):
         
     | 
| 32 | 
         
            +
                    return {
         
     | 
| 33 | 
         
            +
                        "required": {
         
     | 
| 34 | 
         
            +
                            "low_vram_mode": ("BOOLEAN", {"default": False}),
         
     | 
| 35 | 
         
            +
                        }
         
     | 
| 36 | 
         
            +
                    }
         
     | 
| 37 | 
         | 
| 38 | 
         
            +
                def load(self, low_vram_mode=False):
         
     | 
| 39 | 
         
             
                    device = comfy.model_management.get_torch_device()
         
     | 
| 40 | 
         
             
                    model = SPAR3D.from_pretrained(
         
     | 
| 41 | 
         
             
                        SPAR3D_MODEL_NAME,
         
     | 
| 42 | 
         
             
                        config_name="config.yaml",
         
     | 
| 43 | 
         
             
                        weight_name="model.safetensors",
         
     | 
| 44 | 
         
            +
                        low_vram_mode=low_vram_mode,
         
     | 
| 45 | 
         
             
                    )
         
     | 
| 46 | 
         
             
                    model.to(device)
         
     | 
| 47 | 
         
             
                    model.eval()
         
     | 
    	
        gradio_app.py
    CHANGED
    
    | 
         @@ -148,7 +148,7 @@ def run_model( 
     | 
|
| 148 | 
         
             
                start = time.time()
         
     | 
| 149 | 
         
             
                with torch.no_grad():
         
     | 
| 150 | 
         
             
                    with (
         
     | 
| 151 | 
         
            -
                        torch.autocast(device_type=device, dtype=torch. 
     | 
| 152 | 
         
             
                        if "cuda" in device
         
     | 
| 153 | 
         
             
                        else nullcontext()
         
     | 
| 154 | 
         
             
                    ):
         
     | 
| 
         | 
|
| 148 | 
         
             
                start = time.time()
         
     | 
| 149 | 
         
             
                with torch.no_grad():
         
     | 
| 150 | 
         
             
                    with (
         
     | 
| 151 | 
         
            +
                        torch.autocast(device_type=device, dtype=torch.bfloat16)
         
     | 
| 152 | 
         
             
                        if "cuda" in device
         
     | 
| 153 | 
         
             
                        else nullcontext()
         
     | 
| 154 | 
         
             
                    ):
         
     | 
    	
        run.py
    CHANGED
    
    | 
         @@ -54,6 +54,15 @@ if __name__ == "__main__": 
     | 
|
| 54 | 
         
             
                    type=int,
         
     | 
| 55 | 
         
             
                    help="Texture atlas resolution. Default: 1024",
         
     | 
| 56 | 
         
             
                )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 57 | 
         | 
| 58 | 
         
             
                remesh_choices = ["none"]
         
     | 
| 59 | 
         
             
                if TRIANGLE_REMESH_AVAILABLE:
         
     | 
| 
         @@ -102,6 +111,7 @@ if __name__ == "__main__": 
     | 
|
| 102 | 
         
             
                    args.pretrained_model,
         
     | 
| 103 | 
         
             
                    config_name="config.yaml",
         
     | 
| 104 | 
         
             
                    weight_name="model.safetensors",
         
     | 
| 
         | 
|
| 105 | 
         
             
                )
         
     | 
| 106 | 
         
             
                model.to(device)
         
     | 
| 107 | 
         
             
                model.eval()
         
     | 
| 
         @@ -149,7 +159,7 @@ if __name__ == "__main__": 
     | 
|
| 149 | 
         
             
                        torch.cuda.reset_peak_memory_stats()
         
     | 
| 150 | 
         
             
                    with torch.no_grad():
         
     | 
| 151 | 
         
             
                        with (
         
     | 
| 152 | 
         
            -
                            torch.autocast(device_type=device, dtype=torch. 
     | 
| 153 | 
         
             
                            if "cuda" in device
         
     | 
| 154 | 
         
             
                            else nullcontext()
         
     | 
| 155 | 
         
             
                        ):
         
     | 
| 
         @@ -157,7 +167,7 @@ if __name__ == "__main__": 
     | 
|
| 157 | 
         
             
                                image,
         
     | 
| 158 | 
         
             
                                bake_resolution=args.texture_resolution,
         
     | 
| 159 | 
         
             
                                remesh=args.remesh_option,
         
     | 
| 160 | 
         
            -
                                vertex_count= 
     | 
| 161 | 
         
             
                                return_points=True,
         
     | 
| 162 | 
         
             
                            )
         
     | 
| 163 | 
         
             
                    if torch.cuda.is_available():
         
     | 
| 
         | 
|
| 54 | 
         
             
                    type=int,
         
     | 
| 55 | 
         
             
                    help="Texture atlas resolution. Default: 1024",
         
     | 
| 56 | 
         
             
                )
         
     | 
| 57 | 
         
            +
                parser.add_argument(
         
     | 
| 58 | 
         
            +
                    "--low-vram-mode",
         
     | 
| 59 | 
         
            +
                    action="store_true",
         
     | 
| 60 | 
         
            +
                    help=(
         
     | 
| 61 | 
         
            +
                        "Use low VRAM mode. SPAR3D consumes 10.5GB of VRAM by default. "
         
     | 
| 62 | 
         
            +
                        "This mode will reduce the VRAM consumption to roughly 7GB but in exchange "
         
     | 
| 63 | 
         
            +
                        "the model will be slower. Default: False"
         
     | 
| 64 | 
         
            +
                    ),
         
     | 
| 65 | 
         
            +
                )
         
     | 
| 66 | 
         | 
| 67 | 
         
             
                remesh_choices = ["none"]
         
     | 
| 68 | 
         
             
                if TRIANGLE_REMESH_AVAILABLE:
         
     | 
| 
         | 
|
| 111 | 
         
             
                    args.pretrained_model,
         
     | 
| 112 | 
         
             
                    config_name="config.yaml",
         
     | 
| 113 | 
         
             
                    weight_name="model.safetensors",
         
     | 
| 114 | 
         
            +
                    low_vram_mode=args.low_vram_mode,
         
     | 
| 115 | 
         
             
                )
         
     | 
| 116 | 
         
             
                model.to(device)
         
     | 
| 117 | 
         
             
                model.eval()
         
     | 
| 
         | 
|
| 159 | 
         
             
                        torch.cuda.reset_peak_memory_stats()
         
     | 
| 160 | 
         
             
                    with torch.no_grad():
         
     | 
| 161 | 
         
             
                        with (
         
     | 
| 162 | 
         
            +
                            torch.autocast(device_type=device, dtype=torch.bfloat16)
         
     | 
| 163 | 
         
             
                            if "cuda" in device
         
     | 
| 164 | 
         
             
                            else nullcontext()
         
     | 
| 165 | 
         
             
                        ):
         
     | 
| 
         | 
|
| 167 | 
         
             
                                image,
         
     | 
| 168 | 
         
             
                                bake_resolution=args.texture_resolution,
         
     | 
| 169 | 
         
             
                                remesh=args.remesh_option,
         
     | 
| 170 | 
         
            +
                                vertex_count=vertex_count,
         
     | 
| 171 | 
         
             
                                return_points=True,
         
     | 
| 172 | 
         
             
                            )
         
     | 
| 173 | 
         
             
                    if torch.cuda.is_available():
         
     | 
    	
        spar3d/models/network.py
    CHANGED
    
    | 
         @@ -7,8 +7,8 @@ import torch.nn.functional as F 
     | 
|
| 7 | 
         
             
            from einops import rearrange
         
     | 
| 8 | 
         
             
            from jaxtyping import Float
         
     | 
| 9 | 
         
             
            from torch import Tensor
         
     | 
| 
         | 
|
| 10 | 
         
             
            from torch.autograd import Function
         
     | 
| 11 | 
         
            -
            from torch.cuda.amp import custom_bwd, custom_fwd
         
     | 
| 12 | 
         | 
| 13 | 
         
             
            from spar3d.models.utils import BaseModule, normalize
         
     | 
| 14 | 
         
             
            from spar3d.utils import get_device
         
     | 
| 
         @@ -79,7 +79,10 @@ class _TruncExp(Function):  # pylint: disable=abstract-method 
     | 
|
| 79 | 
         
             
                # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
         
     | 
| 80 | 
         
             
                @staticmethod
         
     | 
| 81 | 
         
             
                @conditional_decorator(
         
     | 
| 82 | 
         
            -
                    custom_fwd, 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 83 | 
         
             
                )
         
     | 
| 84 | 
         
             
                def forward(ctx, x):  # pylint: disable=arguments-differ
         
     | 
| 85 | 
         
             
                    ctx.save_for_backward(x)
         
     | 
| 
         | 
|
| 7 | 
         
             
            from einops import rearrange
         
     | 
| 8 | 
         
             
            from jaxtyping import Float
         
     | 
| 9 | 
         
             
            from torch import Tensor
         
     | 
| 10 | 
         
            +
            from torch.amp import custom_bwd, custom_fwd
         
     | 
| 11 | 
         
             
            from torch.autograd import Function
         
     | 
| 
         | 
|
| 12 | 
         | 
| 13 | 
         
             
            from spar3d.models.utils import BaseModule, normalize
         
     | 
| 14 | 
         
             
            from spar3d.utils import get_device
         
     | 
| 
         | 
|
| 79 | 
         
             
                # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
         
     | 
| 80 | 
         
             
                @staticmethod
         
     | 
| 81 | 
         
             
                @conditional_decorator(
         
     | 
| 82 | 
         
            +
                    custom_fwd,
         
     | 
| 83 | 
         
            +
                    "cuda" in get_device(),
         
     | 
| 84 | 
         
            +
                    cast_inputs=torch.float32,
         
     | 
| 85 | 
         
            +
                    device_type="cuda",
         
     | 
| 86 | 
         
             
                )
         
     | 
| 87 | 
         
             
                def forward(ctx, x):  # pylint: disable=arguments-differ
         
     | 
| 88 | 
         
             
                    ctx.save_for_backward(x)
         
     | 
    	
        spar3d/system.py
    CHANGED
    
    | 
         @@ -12,7 +12,7 @@ from huggingface_hub import hf_hub_download 
     | 
|
| 12 | 
         
             
            from jaxtyping import Float
         
     | 
| 13 | 
         
             
            from omegaconf import OmegaConf
         
     | 
| 14 | 
         
             
            from PIL import Image
         
     | 
| 15 | 
         
            -
            from safetensors.torch import load_model
         
     | 
| 16 | 
         
             
            from torch import Tensor
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            from spar3d.models.diffusion.gaussian_diffusion import (
         
     | 
| 
         @@ -115,11 +115,17 @@ class SPAR3D(BaseModule): 
     | 
|
| 115 | 
         
             
                    sigma_max: float = 120.0
         
     | 
| 116 | 
         
             
                    s_churn: float = 3.0
         
     | 
| 117 | 
         | 
| 
         | 
|
| 
         | 
|
| 118 | 
         
             
                cfg: Config
         
     | 
| 119 | 
         | 
| 120 | 
         
             
                @classmethod
         
     | 
| 121 | 
         
             
                def from_pretrained(
         
     | 
| 122 | 
         
            -
                    cls, 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 123 | 
         
             
                ):
         
     | 
| 124 | 
         
             
                    base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
         
     | 
| 125 | 
         
             
                    if os.path.isdir(os.path.join(base_dir, pretrained_model_name_or_path)):
         
     | 
| 
         @@ -139,8 +145,18 @@ class SPAR3D(BaseModule): 
     | 
|
| 139 | 
         | 
| 140 | 
         
             
                    cfg = OmegaConf.load(config_path)
         
     | 
| 141 | 
         
             
                    OmegaConf.resolve(cfg)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 142 | 
         
             
                    model = cls(cfg)
         
     | 
| 143 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 144 | 
         
             
                    return model
         
     | 
| 145 | 
         | 
| 146 | 
         
             
                @property
         
     | 
| 
         @@ -148,39 +164,52 @@ class SPAR3D(BaseModule): 
     | 
|
| 148 | 
         
             
                    return next(self.parameters()).device
         
     | 
| 149 | 
         | 
| 150 | 
         
             
                def configure(self):
         
     | 
| 151 | 
         
            -
                     
     | 
| 152 | 
         
            -
             
     | 
| 153 | 
         
            -
                     
     | 
| 154 | 
         
            -
                    self. 
     | 
| 155 | 
         
            -
             
     | 
| 156 | 
         
            -
                     
     | 
| 157 | 
         
            -
                    self. 
     | 
| 158 | 
         
            -
                    self. 
     | 
| 159 | 
         
            -
             
     | 
| 160 | 
         
            -
                     
     | 
| 161 | 
         
            -
                    self. 
     | 
| 162 | 
         
            -
                    self. 
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
                     
     | 
| 165 | 
         
            -
                    self. 
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
                    )
         
     | 
| 169 | 
         
            -
                    self.global_estimator = find_class(self.cfg.global_estimator_cls)(
         
     | 
| 170 | 
         
            -
                        self.cfg.global_estimator
         
     | 
| 171 | 
         
            -
                    )
         
     | 
| 172 | 
         | 
| 173 | 
         
            -
                     
     | 
| 174 | 
         
            -
                     
     | 
| 175 | 
         
            -
             
     | 
| 176 | 
         
            -
                     
     | 
| 177 | 
         
            -
                     
     | 
| 178 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 179 | 
         
             
                    )
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 182 | 
         
             
                    )
         
     | 
| 183 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 184 | 
         
             
                    self.bbox: Float[Tensor, "2 3"]
         
     | 
| 185 | 
         
             
                    self.register_buffer(
         
     | 
| 186 | 
         
             
                        "bbox",
         
     | 
| 
         @@ -206,30 +235,151 @@ class SPAR3D(BaseModule): 
     | 
|
| 206 | 
         
             
                    self.baker = TextureBaker()
         
     | 
| 207 | 
         
             
                    self.image_processor = ImageProcessor()
         
     | 
| 208 | 
         | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
                     
     | 
| 211 | 
         
            -
                     
     | 
| 212 | 
         
            -
                     
     | 
| 213 | 
         
            -
             
     | 
| 214 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 215 | 
         | 
| 216 | 
         
            -
                     
     | 
| 217 | 
         
            -
                         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 218 | 
         
             
                    )
         
     | 
| 219 | 
         | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                         
     | 
| 224 | 
         
            -
             
     | 
| 225 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 226 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 227 | 
         
             
                    self.diffusion_spaced = SpacedDiffusion(
         
     | 
| 228 | 
         
             
                        use_timesteps=space_timesteps(
         
     | 
| 229 | 
         
             
                            self.cfg.train_time_steps,
         
     | 
| 230 | 
         
             
                            "ddim" + str(self.cfg.inference_time_steps),
         
     | 
| 231 | 
         
             
                        ),
         
     | 
| 232 | 
         
            -
                        **diffusion_kwargs,
         
     | 
| 233 | 
         
             
                    )
         
     | 
| 234 | 
         
             
                    self.sampler = PointCloudSampler(
         
     | 
| 235 | 
         
             
                        model=self.pdiff_backbone,
         
     | 
| 
         @@ -243,6 +393,35 @@ class SPAR3D(BaseModule): 
     | 
|
| 243 | 
         
             
                        s_churn=self.cfg.s_churn,
         
     | 
| 244 | 
         
             
                    )
         
     | 
| 245 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 246 | 
         
             
                def triplane_to_meshes(
         
     | 
| 247 | 
         
             
                    self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
         
     | 
| 248 | 
         
             
                ) -> list[Mesh]:
         
     | 
| 
         @@ -303,6 +482,11 @@ class SPAR3D(BaseModule): 
     | 
|
| 303 | 
         
             
                    return out
         
     | 
| 304 | 
         | 
| 305 | 
         
             
                def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 306 | 
         
             
                    # if batch[rgb_cond] is only one view, add a view dimension
         
     | 
| 307 | 
         
             
                    if len(batch["rgb_cond"].shape) == 4:
         
     | 
| 308 | 
         
             
                        batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
         
     | 
| 
         @@ -340,9 +524,15 @@ class SPAR3D(BaseModule): 
     | 
|
| 340 | 
         | 
| 341 | 
         
             
                    direct_codes = self.tokenizer.detokenize(tokens)
         
     | 
| 342 | 
         
             
                    scene_codes = self.post_processor(direct_codes)
         
     | 
| 
         | 
|
| 343 | 
         
             
                    return scene_codes, direct_codes
         
     | 
| 344 | 
         | 
| 345 | 
         
             
                def forward_pdiff_cond(self, batch: Dict[str, Any]) -> Dict[str, Any]:
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 346 | 
         
             
                    if len(batch["rgb_cond"].shape) == 4:
         
     | 
| 347 | 
         
             
                        batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
         
     | 
| 348 | 
         
             
                        batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
         
     | 
| 
         @@ -512,6 +702,11 @@ class SPAR3D(BaseModule): 
     | 
|
| 512 | 
         
             
                    output_rotation = rotation2 @ rotation
         
     | 
| 513 | 
         | 
| 514 | 
         
             
                    global_dict = {}
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 515 | 
         
             
                    if self.image_estimator is not None:
         
     | 
| 516 | 
         
             
                        global_dict.update(
         
     | 
| 517 | 
         
             
                            self.image_estimator(
         
     | 
| 
         | 
|
| 12 | 
         
             
            from jaxtyping import Float
         
     | 
| 13 | 
         
             
            from omegaconf import OmegaConf
         
     | 
| 14 | 
         
             
            from PIL import Image
         
     | 
| 15 | 
         
            +
            from safetensors.torch import load_file, load_model
         
     | 
| 16 | 
         
             
            from torch import Tensor
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            from spar3d.models.diffusion.gaussian_diffusion import (
         
     | 
| 
         | 
|
| 115 | 
         
             
                    sigma_max: float = 120.0
         
     | 
| 116 | 
         
             
                    s_churn: float = 3.0
         
     | 
| 117 | 
         | 
| 118 | 
         
            +
                    low_vram_mode: bool = False
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
             
                cfg: Config
         
     | 
| 121 | 
         | 
| 122 | 
         
             
                @classmethod
         
     | 
| 123 | 
         
             
                def from_pretrained(
         
     | 
| 124 | 
         
            +
                    cls,
         
     | 
| 125 | 
         
            +
                    pretrained_model_name_or_path: str,
         
     | 
| 126 | 
         
            +
                    config_name: str,
         
     | 
| 127 | 
         
            +
                    weight_name: str,
         
     | 
| 128 | 
         
            +
                    low_vram_mode: bool = False,
         
     | 
| 129 | 
         
             
                ):
         
     | 
| 130 | 
         
             
                    base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
         
     | 
| 131 | 
         
             
                    if os.path.isdir(os.path.join(base_dir, pretrained_model_name_or_path)):
         
     | 
| 
         | 
|
| 145 | 
         | 
| 146 | 
         
             
                    cfg = OmegaConf.load(config_path)
         
     | 
| 147 | 
         
             
                    OmegaConf.resolve(cfg)
         
     | 
| 148 | 
         
            +
                    # Add in low_vram_mode to the config
         
     | 
| 149 | 
         
            +
                    if os.environ.get("SPAR3D_LOW_VRAM", "0") == "1" and torch.cuda.is_available():
         
     | 
| 150 | 
         
            +
                        cfg.low_vram_mode = True
         
     | 
| 151 | 
         
            +
                    else:
         
     | 
| 152 | 
         
            +
                        cfg.low_vram_mode = low_vram_mode if torch.cuda.is_available() else False
         
     | 
| 153 | 
         
             
                    model = cls(cfg)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    if not model.cfg.low_vram_mode:
         
     | 
| 156 | 
         
            +
                        load_model(model, weight_path, strict=False)
         
     | 
| 157 | 
         
            +
                    else:
         
     | 
| 158 | 
         
            +
                        model._state_dict = load_file(weight_path, device="cpu")
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
             
                    return model
         
     | 
| 161 | 
         | 
| 162 | 
         
             
                @property
         
     | 
| 
         | 
|
| 164 | 
         
             
                    return next(self.parameters()).device
         
     | 
| 165 | 
         | 
| 166 | 
         
             
                def configure(self):
         
     | 
| 167 | 
         
            +
                    # Initialize all modules as None
         
     | 
| 168 | 
         
            +
                    self.image_tokenizer = None
         
     | 
| 169 | 
         
            +
                    self.point_embedder = None
         
     | 
| 170 | 
         
            +
                    self.tokenizer = None
         
     | 
| 171 | 
         
            +
                    self.camera_embedder = None
         
     | 
| 172 | 
         
            +
                    self.backbone = None
         
     | 
| 173 | 
         
            +
                    self.post_processor = None
         
     | 
| 174 | 
         
            +
                    self.decoder = None
         
     | 
| 175 | 
         
            +
                    self.image_estimator = None
         
     | 
| 176 | 
         
            +
                    self.global_estimator = None
         
     | 
| 177 | 
         
            +
                    self.pdiff_image_tokenizer = None
         
     | 
| 178 | 
         
            +
                    self.pdiff_camera_embedder = None
         
     | 
| 179 | 
         
            +
                    self.pdiff_backbone = None
         
     | 
| 180 | 
         
            +
                    self.diffusion_spaced = None
         
     | 
| 181 | 
         
            +
                    self.sampler = None
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    # Dummy parameter to safe the device placement for dynamic loading
         
     | 
| 184 | 
         
            +
                    self.dummy_param = torch.nn.Parameter(torch.tensor(0.0))
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 185 | 
         | 
| 186 | 
         
            +
                    channel_scales = [self.cfg.scale_factor_xyz] * 3
         
     | 
| 187 | 
         
            +
                    channel_scales += [self.cfg.scale_factor_rgb] * 3
         
     | 
| 188 | 
         
            +
                    channel_biases = [self.cfg.bias_xyz] * 3
         
     | 
| 189 | 
         
            +
                    channel_biases += [self.cfg.bias_rgb] * 3
         
     | 
| 190 | 
         
            +
                    channel_scales = np.array(channel_scales)
         
     | 
| 191 | 
         
            +
                    channel_biases = np.array(channel_biases)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    betas = get_named_beta_schedule(
         
     | 
| 194 | 
         
            +
                        self.cfg.diffu_sched, self.cfg.train_time_steps, self.cfg.diffu_sched_exp
         
     | 
| 195 | 
         
             
                    )
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    self.diffusion_kwargs = dict(
         
     | 
| 198 | 
         
            +
                        betas=betas,
         
     | 
| 199 | 
         
            +
                        model_mean_type=self.cfg.mean_type,
         
     | 
| 200 | 
         
            +
                        model_var_type=self.cfg.var_type,
         
     | 
| 201 | 
         
            +
                        channel_scales=channel_scales,
         
     | 
| 202 | 
         
            +
                        channel_biases=channel_biases,
         
     | 
| 203 | 
         
             
                    )
         
     | 
| 204 | 
         | 
| 205 | 
         
            +
                    self.is_low_vram = self.cfg.low_vram_mode and get_device() == "cuda"
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    # Create CPU shadow copy if in low VRAM mode
         
     | 
| 208 | 
         
            +
                    if not self.is_low_vram:
         
     | 
| 209 | 
         
            +
                        self._load_all_modules()
         
     | 
| 210 | 
         
            +
                    else:
         
     | 
| 211 | 
         
            +
                        print("Loading in low VRAM mode")
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
             
                    self.bbox: Float[Tensor, "2 3"]
         
     | 
| 214 | 
         
             
                    self.register_buffer(
         
     | 
| 215 | 
         
             
                        "bbox",
         
     | 
| 
         | 
|
| 235 | 
         
             
                    self.baker = TextureBaker()
         
     | 
| 236 | 
         
             
                    self.image_processor = ImageProcessor()
         
     | 
| 237 | 
         | 
| 238 | 
         
            +
                def _load_all_modules(self):
         
     | 
| 239 | 
         
            +
                    """Load all modules into memory"""
         
     | 
| 240 | 
         
            +
                    # Load modules to specified device
         
     | 
| 241 | 
         
            +
                    self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
         
     | 
| 242 | 
         
            +
                        self.cfg.image_tokenizer
         
     | 
| 243 | 
         
            +
                    ).to(self.device)
         
     | 
| 244 | 
         
            +
                    self.point_embedder = find_class(self.cfg.point_embedder_cls)(
         
     | 
| 245 | 
         
            +
                        self.cfg.point_embedder
         
     | 
| 246 | 
         
            +
                    ).to(self.device)
         
     | 
| 247 | 
         
            +
                    self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
         
     | 
| 248 | 
         
            +
                        self.device
         
     | 
| 249 | 
         
            +
                    )
         
     | 
| 250 | 
         
            +
                    self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
         
     | 
| 251 | 
         
            +
                        self.cfg.camera_embedder
         
     | 
| 252 | 
         
            +
                    ).to(self.device)
         
     | 
| 253 | 
         
            +
                    self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(
         
     | 
| 254 | 
         
            +
                        self.device
         
     | 
| 255 | 
         
            +
                    )
         
     | 
| 256 | 
         
            +
                    self.post_processor = find_class(self.cfg.post_processor_cls)(
         
     | 
| 257 | 
         
            +
                        self.cfg.post_processor
         
     | 
| 258 | 
         
            +
                    ).to(self.device)
         
     | 
| 259 | 
         
            +
                    self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(
         
     | 
| 260 | 
         
            +
                        self.device
         
     | 
| 261 | 
         
            +
                    )
         
     | 
| 262 | 
         
            +
                    self.image_estimator = find_class(self.cfg.image_estimator_cls)(
         
     | 
| 263 | 
         
            +
                        self.cfg.image_estimator
         
     | 
| 264 | 
         
            +
                    ).to(self.device)
         
     | 
| 265 | 
         
            +
                    self.global_estimator = find_class(self.cfg.global_estimator_cls)(
         
     | 
| 266 | 
         
            +
                        self.cfg.global_estimator
         
     | 
| 267 | 
         
            +
                    ).to(self.device)
         
     | 
| 268 | 
         
            +
                    self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
         
     | 
| 269 | 
         
            +
                        self.cfg.pdiff_image_tokenizer
         
     | 
| 270 | 
         
            +
                    ).to(self.device)
         
     | 
| 271 | 
         
            +
                    self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
         
     | 
| 272 | 
         
            +
                        self.cfg.pdiff_camera_embedder
         
     | 
| 273 | 
         
            +
                    ).to(self.device)
         
     | 
| 274 | 
         
            +
                    self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
         
     | 
| 275 | 
         
            +
                        self.cfg.pdiff_backbone
         
     | 
| 276 | 
         
            +
                    ).to(self.device)
         
     | 
| 277 | 
         | 
| 278 | 
         
            +
                    self.diffusion_spaced = SpacedDiffusion(
         
     | 
| 279 | 
         
            +
                        use_timesteps=space_timesteps(
         
     | 
| 280 | 
         
            +
                            self.cfg.train_time_steps,
         
     | 
| 281 | 
         
            +
                            "ddim" + str(self.cfg.inference_time_steps),
         
     | 
| 282 | 
         
            +
                        ),
         
     | 
| 283 | 
         
            +
                        **self.diffusion_kwargs,
         
     | 
| 284 | 
         
            +
                    )
         
     | 
| 285 | 
         
            +
                    self.sampler = PointCloudSampler(
         
     | 
| 286 | 
         
            +
                        model=self.pdiff_backbone,
         
     | 
| 287 | 
         
            +
                        diffusion=self.diffusion_spaced,
         
     | 
| 288 | 
         
            +
                        num_points=512,
         
     | 
| 289 | 
         
            +
                        point_dim=6,
         
     | 
| 290 | 
         
            +
                        guidance_scale=self.cfg.guidance_scale,
         
     | 
| 291 | 
         
            +
                        clip_denoised=True,
         
     | 
| 292 | 
         
            +
                        sigma_min=1e-3,
         
     | 
| 293 | 
         
            +
                        sigma_max=self.cfg.sigma_max,
         
     | 
| 294 | 
         
            +
                        s_churn=self.cfg.s_churn,
         
     | 
| 295 | 
         
             
                    )
         
     | 
| 296 | 
         | 
| 297 | 
         
            +
                def _load_main_modules(self):
         
     | 
| 298 | 
         
            +
                    """Load the main processing modules"""
         
     | 
| 299 | 
         
            +
                    if all(
         
     | 
| 300 | 
         
            +
                        [
         
     | 
| 301 | 
         
            +
                            self.image_tokenizer,
         
     | 
| 302 | 
         
            +
                            self.point_embedder,
         
     | 
| 303 | 
         
            +
                            self.tokenizer,
         
     | 
| 304 | 
         
            +
                            self.camera_embedder,
         
     | 
| 305 | 
         
            +
                            self.backbone,
         
     | 
| 306 | 
         
            +
                            self.post_processor,
         
     | 
| 307 | 
         
            +
                            self.decoder,
         
     | 
| 308 | 
         
            +
                        ]
         
     | 
| 309 | 
         
            +
                    ):
         
     | 
| 310 | 
         
            +
                        return  # Main modules already loaded
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    device = next(self.parameters()).device  # Get the current device
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    self.image_tokenizer = find_class(self.cfg.image_tokenizer_cls)(
         
     | 
| 315 | 
         
            +
                        self.cfg.image_tokenizer
         
     | 
| 316 | 
         
            +
                    ).to(device)
         
     | 
| 317 | 
         
            +
                    self.point_embedder = find_class(self.cfg.point_embedder_cls)(
         
     | 
| 318 | 
         
            +
                        self.cfg.point_embedder
         
     | 
| 319 | 
         
            +
                    ).to(device)
         
     | 
| 320 | 
         
            +
                    self.tokenizer = find_class(self.cfg.tokenizer_cls)(self.cfg.tokenizer).to(
         
     | 
| 321 | 
         
            +
                        device
         
     | 
| 322 | 
         
             
                    )
         
     | 
| 323 | 
         
            +
                    self.camera_embedder = find_class(self.cfg.camera_embedder_cls)(
         
     | 
| 324 | 
         
            +
                        self.cfg.camera_embedder
         
     | 
| 325 | 
         
            +
                    ).to(device)
         
     | 
| 326 | 
         
            +
                    self.backbone = find_class(self.cfg.backbone_cls)(self.cfg.backbone).to(device)
         
     | 
| 327 | 
         
            +
                    self.post_processor = find_class(self.cfg.post_processor_cls)(
         
     | 
| 328 | 
         
            +
                        self.cfg.post_processor
         
     | 
| 329 | 
         
            +
                    ).to(device)
         
     | 
| 330 | 
         
            +
                    self.decoder = find_class(self.cfg.decoder_cls)(self.cfg.decoder).to(device)
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                    # Restore weights if we have a checkpoint path
         
     | 
| 333 | 
         
            +
                    if hasattr(self, "_state_dict"):
         
     | 
| 334 | 
         
            +
                        self.load_state_dict(self._state_dict, strict=False)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                def _load_estimator_modules(self):
         
     | 
| 337 | 
         
            +
                    """Load the estimator modules"""
         
     | 
| 338 | 
         
            +
                    if all([self.image_estimator, self.global_estimator]):
         
     | 
| 339 | 
         
            +
                        return  # Estimator modules already loaded
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    device = next(self.parameters()).device  # Get the current device
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    self.image_estimator = find_class(self.cfg.image_estimator_cls)(
         
     | 
| 344 | 
         
            +
                        self.cfg.image_estimator
         
     | 
| 345 | 
         
            +
                    ).to(device)
         
     | 
| 346 | 
         
            +
                    self.global_estimator = find_class(self.cfg.global_estimator_cls)(
         
     | 
| 347 | 
         
            +
                        self.cfg.global_estimator
         
     | 
| 348 | 
         
            +
                    ).to(device)
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    # Restore weights if we have a checkpoint path
         
     | 
| 351 | 
         
            +
                    if hasattr(self, "_state_dict"):
         
     | 
| 352 | 
         
            +
                        self.load_state_dict(self._state_dict, strict=False)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                def _load_pdiff_modules(self):
         
     | 
| 355 | 
         
            +
                    """Load only the point diffusion modules"""
         
     | 
| 356 | 
         
            +
                    if all(
         
     | 
| 357 | 
         
            +
                        [
         
     | 
| 358 | 
         
            +
                            self.pdiff_image_tokenizer,
         
     | 
| 359 | 
         
            +
                            self.pdiff_camera_embedder,
         
     | 
| 360 | 
         
            +
                            self.pdiff_backbone,
         
     | 
| 361 | 
         
            +
                        ]
         
     | 
| 362 | 
         
            +
                    ):
         
     | 
| 363 | 
         
            +
                        return  # PDiff modules already loaded
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    device = next(self.parameters()).device  # Get the current device
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    self.pdiff_image_tokenizer = find_class(self.cfg.pdiff_image_tokenizer_cls)(
         
     | 
| 368 | 
         
            +
                        self.cfg.pdiff_image_tokenizer
         
     | 
| 369 | 
         
            +
                    ).to(device)
         
     | 
| 370 | 
         
            +
                    self.pdiff_camera_embedder = find_class(self.cfg.pdiff_camera_embedder_cls)(
         
     | 
| 371 | 
         
            +
                        self.cfg.pdiff_camera_embedder
         
     | 
| 372 | 
         
            +
                    ).to(device)
         
     | 
| 373 | 
         
            +
                    self.pdiff_backbone = find_class(self.cfg.pdiff_backbone_cls)(
         
     | 
| 374 | 
         
            +
                        self.cfg.pdiff_backbone
         
     | 
| 375 | 
         
            +
                    ).to(device)
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
             
                    self.diffusion_spaced = SpacedDiffusion(
         
     | 
| 378 | 
         
             
                        use_timesteps=space_timesteps(
         
     | 
| 379 | 
         
             
                            self.cfg.train_time_steps,
         
     | 
| 380 | 
         
             
                            "ddim" + str(self.cfg.inference_time_steps),
         
     | 
| 381 | 
         
             
                        ),
         
     | 
| 382 | 
         
            +
                        **self.diffusion_kwargs,
         
     | 
| 383 | 
         
             
                    )
         
     | 
| 384 | 
         
             
                    self.sampler = PointCloudSampler(
         
     | 
| 385 | 
         
             
                        model=self.pdiff_backbone,
         
     | 
| 
         | 
|
| 393 | 
         
             
                        s_churn=self.cfg.s_churn,
         
     | 
| 394 | 
         
             
                    )
         
     | 
| 395 | 
         | 
| 396 | 
         
            +
                    # Restore weights if we have a checkpoint path
         
     | 
| 397 | 
         
            +
                    if hasattr(self, "_state_dict"):
         
     | 
| 398 | 
         
            +
                        self.load_state_dict(self._state_dict, strict=False)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                def _unload_pdiff_modules(self):
         
     | 
| 401 | 
         
            +
                    """Unload point diffusion modules to free memory"""
         
     | 
| 402 | 
         
            +
                    self.pdiff_image_tokenizer = None
         
     | 
| 403 | 
         
            +
                    self.pdiff_camera_embedder = None
         
     | 
| 404 | 
         
            +
                    self.pdiff_backbone = None
         
     | 
| 405 | 
         
            +
                    self.diffusion_spaced = None
         
     | 
| 406 | 
         
            +
                    self.sampler = None
         
     | 
| 407 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                def _unload_main_modules(self):
         
     | 
| 410 | 
         
            +
                    """Unload main processing modules to free memory"""
         
     | 
| 411 | 
         
            +
                    self.image_tokenizer = None
         
     | 
| 412 | 
         
            +
                    self.point_embedder = None
         
     | 
| 413 | 
         
            +
                    self.tokenizer = None
         
     | 
| 414 | 
         
            +
                    self.camera_embedder = None
         
     | 
| 415 | 
         
            +
                    self.backbone = None
         
     | 
| 416 | 
         
            +
                    self.post_processor = None
         
     | 
| 417 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                def _unload_estimator_modules(self):
         
     | 
| 420 | 
         
            +
                    """Unload estimator modules to free memory"""
         
     | 
| 421 | 
         
            +
                    self.image_estimator = None
         
     | 
| 422 | 
         
            +
                    self.global_estimator = None
         
     | 
| 423 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
             
                def triplane_to_meshes(
         
     | 
| 426 | 
         
             
                    self, triplanes: Float[Tensor, "B 3 Cp Hp Wp"]
         
     | 
| 427 | 
         
             
                ) -> list[Mesh]:
         
     | 
| 
         | 
|
| 482 | 
         
             
                    return out
         
     | 
| 483 | 
         | 
| 484 | 
         
             
                def get_scene_codes(self, batch) -> Float[Tensor, "B 3 C H W"]:
         
     | 
| 485 | 
         
            +
                    if self.is_low_vram:
         
     | 
| 486 | 
         
            +
                        self._unload_pdiff_modules()
         
     | 
| 487 | 
         
            +
                        self._unload_estimator_modules()
         
     | 
| 488 | 
         
            +
                        self._load_main_modules()
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
             
                    # if batch[rgb_cond] is only one view, add a view dimension
         
     | 
| 491 | 
         
             
                    if len(batch["rgb_cond"].shape) == 4:
         
     | 
| 492 | 
         
             
                        batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
         
     | 
| 
         | 
|
| 524 | 
         | 
| 525 | 
         
             
                    direct_codes = self.tokenizer.detokenize(tokens)
         
     | 
| 526 | 
         
             
                    scene_codes = self.post_processor(direct_codes)
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
             
                    return scene_codes, direct_codes
         
     | 
| 529 | 
         | 
| 530 | 
         
             
                def forward_pdiff_cond(self, batch: Dict[str, Any]) -> Dict[str, Any]:
         
     | 
| 531 | 
         
            +
                    if self.is_low_vram:
         
     | 
| 532 | 
         
            +
                        self._unload_main_modules()
         
     | 
| 533 | 
         
            +
                        self._unload_estimator_modules()
         
     | 
| 534 | 
         
            +
                        self._load_pdiff_modules()
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
             
                    if len(batch["rgb_cond"].shape) == 4:
         
     | 
| 537 | 
         
             
                        batch["rgb_cond"] = batch["rgb_cond"].unsqueeze(1)
         
     | 
| 538 | 
         
             
                        batch["mask_cond"] = batch["mask_cond"].unsqueeze(1)
         
     | 
| 
         | 
|
| 702 | 
         
             
                    output_rotation = rotation2 @ rotation
         
     | 
| 703 | 
         | 
| 704 | 
         
             
                    global_dict = {}
         
     | 
| 705 | 
         
            +
                    if self.is_low_vram:
         
     | 
| 706 | 
         
            +
                        self._unload_pdiff_modules()
         
     | 
| 707 | 
         
            +
                        self._unload_main_modules()
         
     | 
| 708 | 
         
            +
                        self._load_estimator_modules()
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
             
                    if self.image_estimator is not None:
         
     | 
| 711 | 
         
             
                        global_dict.update(
         
     | 
| 712 | 
         
             
                            self.image_estimator(
         
     | 
    	
        spar3d/utils.py
    CHANGED
    
    | 
         @@ -10,7 +10,7 @@ import spar3d.models.utils as spar3d_utils 
     | 
|
| 10 | 
         | 
| 11 | 
         | 
| 12 | 
         
             
            def get_device():
         
     | 
| 13 | 
         
            -
                if os.environ.get(" 
     | 
| 14 | 
         
             
                    return "cpu"
         
     | 
| 15 | 
         | 
| 16 | 
         
             
                device = "cpu"
         
     | 
| 
         | 
|
| 10 | 
         | 
| 11 | 
         | 
| 12 | 
         
             
            def get_device():
         
     | 
| 13 | 
         
            +
                if os.environ.get("SPAR3D_USE_CPU", "0") == "1":
         
     | 
| 14 | 
         
             
                    return "cpu"
         
     | 
| 15 | 
         | 
| 16 | 
         
             
                device = "cpu"
         
     |