kkata commited on
Commit
b5c58e0
·
verified ·
1 Parent(s): 31dd5f0

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +27 -10
app.py CHANGED
@@ -31,6 +31,8 @@ from langchain_core.prompts import ChatPromptTemplate
31
  # LangChain OpenAI imports
32
  from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
33
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
 
 
34
 
35
  # LlamaParse & LlamaIndex imports
36
  from llama_parse import LlamaParse # Document parsing library
@@ -54,10 +56,16 @@ from datetime import datetime
54
 
55
  #====================================SETUP=====================================#
56
  # Fetch secrets from Hugging Face Spaces
57
- api_key = config.get("API_KEY")
58
- endpoint = config.get("OPENAI_API_BASE")
59
- llama_api_key = os.environ['GROQ_API_KEY']
60
- MEM0_api_key = os.environ['mem0']
 
 
 
 
 
 
61
 
62
  # Initialize the OpenAI embedding function for Chroma
63
  embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
@@ -542,16 +550,25 @@ class NutritionBot:
542
  """
543
 
544
  # Initialize a memory client to store and retrieve customer interactions
545
- self.memory = MemoryClient(api_key=userdata.get("mem0")) # Complete the code to define the memory client API key
 
546
 
547
- # Initialize the OpenAI client using the provided credentials
548
  self.client = ChatOpenAI(
549
- model_name="gpt-4o-mini", # Specify the model to use (e.g., GPT-4 optimized version)
550
- api_key=config.get("API_KEY"), # API key for authentication
551
- endpoint = config.get("OPENAI_API_BASE"),
552
- temperature=0 # Controls randomness in responses; 0 ensures deterministic results
553
  )
554
 
 
 
 
 
 
 
 
 
555
  # Define tools available to the chatbot, such as web search
556
  tools = [agentic_rag]
557
 
 
31
  # LangChain OpenAI imports
32
  from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
33
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
34
+ from langchain_openai import ChatOpenAI # add this import
35
+
36
 
37
  # LlamaParse & LlamaIndex imports
38
  from llama_parse import LlamaParse # Document parsing library
 
56
 
57
  #====================================SETUP=====================================#
58
  # Fetch secrets from Hugging Face Spaces
59
+ #api_key = config.get("API_KEY")
60
+ #endpoint = config.get("OPENAI_API_BASE")
61
+ #llama_api_key = os.environ['GROQ_API_KEY']
62
+ #MEM0_api_key = os.environ['mem0']
63
+
64
+ # Fetch secrets from Hugging Face Spaces
65
+ api_key = os.environ.get("API_KEY")
66
+ endpoint = os.environ.get("OPENAI_API_BASE")
67
+ llama_api_key = os.environ.get("GROQ_API_KEY")
68
+ MEM0_api_key = os.environ.get("mem0")
69
 
70
  # Initialize the OpenAI embedding function for Chroma
71
  embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
 
550
  """
551
 
552
  # Initialize a memory client to store and retrieve customer interactions
553
+ #self.memory = MemoryClient(api_key=userdata.get("mem0")) # Complete the code to define the memory client API key
554
+ self.memory = MemoryClient(api_key=os.environ.get("mem0"))
555
 
556
+ # LLM client
557
  self.client = ChatOpenAI(
558
+ openai_api_base=os.environ.get("OPENAI_API_BASE"),
559
+ openai_api_key=os.environ.get("API_KEY"),
560
+ model="gpt-4o-mini",
561
+ temperature=0
562
  )
563
 
564
+ # Initialize the OpenAI client using the provided credentials
565
+ #self.client = ChatOpenAI(
566
+ # model_name="gpt-4o-mini", # Specify the model to use (e.g., GPT-4 optimized version)
567
+ # api_key=config.get("API_KEY"), # API key for authentication
568
+ # endpoint = config.get("OPENAI_API_BASE"),
569
+ # temperature=0 # Controls randomness in responses; 0 ensures deterministic results
570
+ #)
571
+
572
  # Define tools available to the chatbot, such as web search
573
  tools = [agentic_rag]
574